Do you want to publish a course? Click here

When is settling important for particle concentrations in wall-bounded turbulent flows?

120   0   0.0 ( 0 )
 Added by Andrew Bragg
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

We explore the role of gravitational settling on inertial particle concentrations in a wall-bounded turbulent flow. While it may be thought that settling can be ignored when the settling parameter $Svequiv v_s/u_tau$ is small ($v_s$ - Stokes settling velocity, $u_tau$ - fluid friction velocity), we show that even in this regime the settling may make a leading order contribution to the concentration profiles. This is because the importance of settling is determined, not by the size of $v_s$ compared with $u_tau$ or any other fluid velocity scale, but by the size of $v_s$ relative to the other mechanisms that control the vertical particle velocity and concentration profile. We explain this in the context of the particle mean-momentum equation, and show that in general, there always exists a region in the boundary layer where settling cannot be neglected, no matter how small $Sv$ is (provided it is finite). Direct numerical simulations confirm the arguments, and show that the near-wall concentration is highly dependent on $Sv$ even when $Svll 1$, and can reduce by an order of magnitude when $Sv$ is increased from $O(10^{-4})$ and $O(10^{-2})$. The results also show that the preferential sampling of ejection events in the boundary layer by inertial particles when $Sv=0$ is profoundly altered as $Sv$ is increased, and is replaced by a preferential sampling of sweep events due to the onset of the preferential sweeping mechanism.



rate research

Read More

On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.
The ability of linear stochastic response analysis to estimate coherent motions is investigated in turbulent channel flow at friction Reynolds number Re$_tau$ = 1007. The analysis is performed for spatial scales characteristic of buffer-layer and large-scale motions by separating the contributions of different temporal frequencies. Good agreement between the measured spatio-temporal power spectral densities and those estimated by means of the resolvent is found when the effect of turbulent Reynolds stresses, modelled with an eddy-viscosity associated to the turbulent mean flow, is included in the resolvent operator. The agreement is further improved when the flat forcing power spectrum (white noise) is replaced with a power spectrum matching the measures. Such a good agreement is not observed when the eddy-viscosity terms are not included in the resolvent operator. In this case, the estimation based on the resolvent is unable to select the right peak frequency and wall-normal location of buffer-layer motions. Similar results are found when comparing truncated expansions of measured streamwise velocity power spectral densities based on a spectral proper orthogonal decomposition to those obtained with optimal resolvent modes.
509 - Guiyu Cao , Kun Xu , Liang Pan 2021
In this paper, a high-order gas-kinetic scheme in general curvilinear coordinate (HGKS-cur) is developed for the numerical simulation of compressible turbulence. Based on the coordinate transformation, the Bhatnagar-Gross-Krook (BGK) equation is transformed from physical space to computational space. To deal with the general mesh given by discretized points, the geometrical metrics need to be constructed by the dimension-by-dimension Lagrangian interpolation. The multidimensional weighted essentially non-oscillatory (WENO) reconstruction is adopted in the computational domain for spatial accuracy, where the reconstructed variables are the cell averaged Jacobian and the Jacobian-weighted conservative variables. The two-stage fourth-order method, which was developed for spatial-temporal coupled flow solvers, is used for temporal discretization. The numerical examples for inviscid and laminar flows validate the accuracy and geometrical conservation law of HGKS-cur. As a direct application, HGKS-cur is implemented for the implicit large eddy simulation (iLES) in compressible wall-bounded turbulent flows, including the compressible turbulent channel flow and compressible turbulent flow over periodic hills. The iLES results with HGKS-cur are in good agreement with the refereed spectral methods and high-order finite volume methods. The performance of HGKS-cur demonstrates its capability as a powerful tool for the numerical simulation of compressible wall-bounded turbulent flows and massively separated flows.
A new scaling is derived that yields a Reynolds number independent profile for all components of the Reynolds stress in the near-wall region of wall bounded flows, including channel, pipe and boundary layer flows. The scaling demonstrates the important role played by the wall shear stress fluctuations and how the large eddies determine the Reynolds number dependence of the near-wall turbulence behavior.
Convection over a wavy heated bottom wall in the air flow has been studied in experiments with the Rayleigh number $sim 10^8$. It is shown that the mean temperature gradient in the flow core inside a large-scale circulation is directed upward, that corresponds to the stably stratified flow. In the experiments with a wavy heated bottom wall, we detect large-scale standing internal gravity waves excited in the regions with the stably stratified flow. The wavelength and the period of these waves are much larger than the turbulent spatial and time scales, respectively. In particular, the frequencies of the observed large-scale waves vary from 0.006 Hz to 0.07 Hz, while the turbulent time in the integral scale is about 0.5 s. The measured spectra of these waves contains several localized maxima, that implies an existence of waveguide resonators for the large-scale standing internal gravity waves. For comparisons, experiments with convection over a smooth plane bottom wall at the same mean temperature difference between bottom and upper walls have been also conducted. In these experiments various locations with a stably stratified flow are also found and the large-scale standing internal gravity waves are observed in these regions.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا