Do you want to publish a course? Click here

Modeling Inner Boundary Values at 18 Solar Radii During Solar Quiet time for Global Three-dimensional Time-Dependent Magnetohydrodynamic Numerical Simulation

354   0   0.0 ( 0 )
 Added by Chin-Chun Wu
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

The solar wind speed plays a key role in the transport of CME out of the Sun and ultimately determines the arrival time of CME-driven shocks in the heliosphere. Here, we develop an empirical model of the solar wind parameters at the inner boundary (18 solar radii, Rs) used in our global, 3D MHD model (G3DMHD) or other equivalent ones. The model takes solar magnetic field maps at 2.5 Rs (which is based on the Potential Field Source Surface, PFSS model) and interpolates the solar wind plasma and field out to 18 Rs using the algorithm of Wang and Sheeley [1990a]. A formula V_{18Rs} = V1 + V2 fs^{alpha} is used to calculate the solar wind speed at 18 Rs, where V1 is in a range of 150-350 km/s, V2 is in the range of 250-500 km/s, and fs is an expansion factor, which was derived from the Wang and Sheeley (WS) algorithm at 2.5 Rs. To estimate the solar wind density and temperature at 18 Rs, we assume an incompressible solar wind and a constant total pressure. The three free parameters are obtained by adjusting simulation results to match in-situ observations (Wind) for more than 54 combination of V1, V2 and {alpha} during a quiet solar wind interval, CR2082. We found V18Rs = (150 +/- 50) + (500 +/- 100) fs^-0.4 km/s performs reasonably well in predicting solar wind parameters at 1 AU not just for CR 2082 but other quiet solar period. Comparing results from the present study with those from WSA [Arge et al. 2000; 2004] we conclude that i) Results of using V_{18Rs} with the full rotation data (FR) as input to drive G3DMHD model is better than the results of WSA using FR, or daily updated. ii) When using a modified daily updated 4-day-advanced solar wind speed predictions WSA performs slightly better than our G3DMHD. iii) When using V_{18Rs} as input, G3DMHD model performs much better than the WSA formula. We argue the necessity of the extra angular width ({theta}b) parameter used in WSA.



rate research

Read More

The suns chromosphere is a highly dynamic, partially-ionized region where spicules (hot jets of plasma) form. Here we present a two-fluid MHD model to study the chromosphere, which includes ion-neutral interaction and frictional heating. Our simulation recovers a magnetic canopy shape that forms quickly, but is also quickly disrupted by the formation of a jet. Our simulation produces a shock self-consistently, where the jet is driven by the frictional heating, which is much greater than the ohmic heating. Thus, our simulation demonstrates that the jet could be driven purely by thermal effects due to ion-neutral collisions and not by magnetic reconnection. We plan to improve the model to include photo-chemical effects and radiation.
We study the time-dependent modulation effect and derive the local interstellar spectra (LIS) for the cosmic ray (CR) proton, helium, boron and carbon. A two-dimensional modulation model including the variation of the interplanetary environment with time is adopted to describe modulation process. The propagation equation of CRs in the heliosphere is numerically solved by the package Solarprop. We derive the LIS by fitting the latest results of several experiments, including Voyager 1, PAMELA, BESS-POLARII and ACE, during low solar activity periods. We further study the modulation in the polarity reversal periods with the PAMELA proton data. We find that the rigidity dependence of the diffusion coefficient is critical to explain the modulation effect during reversal periods. Our results also indicate a power law relation between the diffusion coefficient and the magnitude of the heliospheric magnetic field (HMF) at the Earth.
The extended minimum of Solar Cycle 23, the extremely quiet solar-wind conditions prevailing, and the mini-maximum of Solar Cycle 24 drew global attention and many authors have since attempted to predict the amplitude of the upcoming Solar Cycle 25, which is predicted to be the third successive weak cycle; it is a unique opportunity to probe the Sun during such quiet periods. Earlier work has established a steady decline, over two decades, in solar photospheric fields at latitudes above $45^{circ}$ and a similar decline in solar-wind micro-turbulence levels as measured by interplanetary scintillation (IPS) observations. However, the relation between the photospheric magnetic fields and those in the low corona/solar-wind are not straightforward. Therefore, in the present article, we have used potential-field source-surface (PFSS) extrapolations to deduce global magnetic-fields using synoptic magnetograms observed with National Solar Observatory (NSO), Kitt Peak, USA (NSO/KP) and Solar Optical Long-term Investigation of the Sun (NSO/SOLIS) instruments during 1975-2018. Furthermore, we have measured the normalized scintillation index [m] using the IPS observations carried out at the Institute of Space Earth Environment Research (ISEE), Japan during 1983-2017. From these observations, we have found that, since the mid-1990s, the magnetic-field over different latitudes at 2.5 $rm R_{odot}$ and 10 $rm R_{odot}$(extrapolated using PFSS method) has decreased by $approx 11.3-22.2 %$. In phase with the declining magnetic-fields, the quantity m also declined by $approx 23.6 %$. These observations emphasize the inter-relationship between the global magnetic-field and various turbulence parameters in the solar corona and solar wind.
We investigated the dynamic evolution of a 3-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare, by simply extending 2-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low $beta$ plasma to 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in 3D simulation shows similar behaviors to 2D simulation, while a strongly twisted flux rope in 3D simulation shows clearly different time evolution from 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than 2D simulations, and the reconnection rates in 3D cases are also larger than 2D cases. This indicates a positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small scale plasmoids are formed inside a current sheet and make it turbulent. These small scale plasmoid ejections has role in locally increasing reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
133 - S. Rial , I. Arregui , J. Terradas 2010
We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively generated perturbations is studied by solving the linear, ideal magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we neglect gas pressure the slow mode is absent and therefore only coupled MHD fast and Alfven modes remain. Two types of numerical experiments are performed. First, the resonant wave energy transfer between a fast normal mode of the system and local Alfven waves is analyzed. It is seen how, because of resonant coupling, the fast wave with global character transfers its energy to Alfvenic oscillations localized around a particular magnetic surface within the arcade, thus producing the damping of the initial fast MHD mode. Second, the time evolution of a localized impulsive excitation, trying to mimic a nearby coronal disturbance, is considered. In this case, the generated fast wavefront leaves its energy on several magnetic surfaces within the arcade. The system is therefore able to trap energy in the form of Alfvenic oscillations, even in the absence of a density enhancement such as that of a coronal loop. These local oscillations are subsequently phase-mixed to smaller spatial scales. The amount of wave energy trapped by the system via wave energy conversion strongly depends on the wavelength of perturbations in the perpendicular direction, but is almost independent from the ratio of the magnetic to density scale heights.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا