Do you want to publish a course? Click here

Three-Dimensional Propagation of Magnetohydrodynamic Waves in Solar Coronal Arcades

113   0   0.0 ( 0 )
 Added by Samuel Rial Mr
 Publication date 2010
  fields Physics
and research's language is English




Ask ChatGPT about the research

We numerically investigate the excitation and temporal evolution of oscillations in a two-dimensional coronal arcade by including the three-dimensional propagation of perturbations. The time evolution of impulsively generated perturbations is studied by solving the linear, ideal magnetohydrodynamic (MHD) equations in the zero-beta approximation. As we neglect gas pressure the slow mode is absent and therefore only coupled MHD fast and Alfven modes remain. Two types of numerical experiments are performed. First, the resonant wave energy transfer between a fast normal mode of the system and local Alfven waves is analyzed. It is seen how, because of resonant coupling, the fast wave with global character transfers its energy to Alfvenic oscillations localized around a particular magnetic surface within the arcade, thus producing the damping of the initial fast MHD mode. Second, the time evolution of a localized impulsive excitation, trying to mimic a nearby coronal disturbance, is considered. In this case, the generated fast wavefront leaves its energy on several magnetic surfaces within the arcade. The system is therefore able to trap energy in the form of Alfvenic oscillations, even in the absence of a density enhancement such as that of a coronal loop. These local oscillations are subsequently phase-mixed to smaller spatial scales. The amount of wave energy trapped by the system via wave energy conversion strongly depends on the wavelength of perturbations in the perpendicular direction, but is almost independent from the ratio of the magnetic to density scale heights.

rate research

Read More

Magnetohydrodynamic (MHD) instabilities allow energy to be released from stressed magnetic fields, commonly modelled in cylindrical flux tubes linking parallel planes, but, more recently, also in curved arcades containing flux tubes with both footpoints in the same photospheric plane. Uncurved cylindrical flux tubes containing multiple individual threads have been shown to be capable of sustaining an MHD avalanche, whereby a single unstable thread can destabilise many. We examine the properties of multi-threaded coronal loops, wherein each thread is created by photospheric driving in a realistic, curved coronal arcade structure (with both footpoints of each thread in the same plane). We use three-dimensional MHD simulations to study the evolution of single- and multi-threaded coronal loops, which become unstable and reconnect, while varying the driving velocity of individual threads. Experiments containing a single thread destabilise in a manner indicative of an ideal MHD instability and consistent with previous examples in the literature. The introduction of additional threads modifies this picture, with aspects of the model geometry and relative driving speeds of individual threads affecting the ability of any thread to destabilise others. In both single- and multi-threaded cases, continuous driving of the remnants of disrupted threads produces secondary, aperiodic bursts of energetic release.
133 - Tongjiang Wang 2018
Recent observations have revealed the ubiquitous presence of magnetohydrodynamic (MHD) waves and oscillations in the solar corona. The aim of this review is to present recent progress in the observational study of four types of wave (or oscillation) phenomena mainly occurring in active region coronal loops, including (i) flare-induced slow mode oscillations, (ii) fast kink mode oscillations, (iii) propagating slow magnetoacoustic waves, and (iv) ubiquitous propagating kink (Alfvenic) waves. This review not only comprehensively outlines various aspects of these waves and coronal seismology, but also highlights the topics that are newly emerging or hotly debated, thus can provide readers a useful guidance on further studies of their interested topics.
131 - B. Li , P. Antolin , M.-Z. Guo 2020
Characterized by cyclic axisymmetric perturbations to both the magnetic and fluid parameters, magnetohydrodynamic fast sausage modes (FSMs) have proven useful for solar coronal seismology given their strong dispersion. This review starts by summarizing the dispersive properties of the FSMs in the canonical configuration where the equilibrium quantities are transversely structured in a step fashion. With this preparation we then review the recent theoretical studies on coronal FSMs, showing that the canonical dispersion features have been better understood physically, and further exploited seismologically. In addition, we show that departures from the canonical equilibrium configuration have led to qualitatively different dispersion features, thereby substantially broadening the range of observations that FSMs can be invoked to account for. We also summarize the advances in forward modeling studies, emphasizing the intricacies in interpreting observed oscillatory signals in terms of FSMs. All these advances notwithstanding, we offer a list of aspects that remain to be better addressed, with the physical connection of coronal FSMs to the quasi-periodic pulsations in solar flares particularly noteworthy.
221 - T. V. Zaqarashvili 2018
The influence of a toroidal magnetic field on the dynamics of shallow water waves in the solar tachocline is studied. A sub-adiabatic temperature gradient in the upper overshoot layer of the tachocline causes significant reduction of surface gravity speed, which leads to trapping of the waves near the equator and to an increase of the Rossby wave period up to the timescale of solar cycles. Dispersion relations of all equatorial magnetohydrodynamic (MHD) shallow water waves are obtained in the upper tachocline conditions and solved analytically and numerically. It is found that the toroidal magnetic field splits equatorial Rossby and Rossby-gravity waves into fast and slow modes. For a reasonable value of reduced gravity, global equatorial fast magneto-Rossby waves (with the spatial scale of equatorial extent) have a periodicity of 11 years, matching the timescale of activity cycles. The solutions are confined around the equator between latitudes 20-40, coinciding with sunspot activity belts. Equatorial slow magneto-Rossby waves have a periodicity of 90-100 yr, resembling the observed long-term modulation of cycle strength, i.e., the Gleissberg cycle. Equatorial magneto-Kelvin and slow magneto-Rossby-gravity waves have the periodicity of 1-2 years and may correspond to observed annual and quasi-biennial oscillations. Equatorial fast magneto-Rossby-gravity and magneto-inertia-gravity waves have periods of hundreds of days and might be responsible for observed Rieger-type periodicity. Consequently, the equatorial MHD shallow water waves in the upper overshoot tachocline may capture all timescales of observed variations in solar activity, but detailed analytical and numerical studies are necessary to make a firm conclusion toward the connection of the waves to the solar dynamo.
We investigated the dynamic evolution of a 3-dimensional (3D) flux rope eruption and magnetic reconnection process in a solar flare, by simply extending 2-dimensional (2D) resistive magnetohydrodynamic simulation model of solar flares with low $beta$ plasma to 3D model. We succeeded in reproducing a current sheet and bi-directional reconnection outflows just below the flux rope during the eruption in our 3D simulations. We calculated four cases of a strongly twisted flux rope and a weakly twisted flux rope in 2D and 3D simulations. The time evolution of a weakly twisted flux rope in 3D simulation shows similar behaviors to 2D simulation, while a strongly twisted flux rope in 3D simulation shows clearly different time evolution from 2D simulation except for the initial phase evolution. The ejection speeds of both strongly and weakly twisted flux ropes in 3D simulations are larger than 2D simulations, and the reconnection rates in 3D cases are also larger than 2D cases. This indicates a positive feedback between the ejection speed of a flux rope and the reconnection rate even in the 3D simulation, and we conclude that the plasmoid-induced reconnection model can be applied to 3D. We also found that small scale plasmoids are formed inside a current sheet and make it turbulent. These small scale plasmoid ejections has role in locally increasing reconnection rate intermittently as observed in solar flares, coupled with a global eruption of a flux rope.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا