Do you want to publish a course? Click here

4d models of dS uplift in KKLT

102   0   0.0 ( 0 )
 Added by Andrei Linde
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

It was shown in arXiv:1808.09428 that the modified 4d version of the KKLT model proposed in arXiv:1707.08678 is inconsistent for large values of the parameter $c$ advocated in arXiv:1707.08678, since there is a point in the moduli space where $|D_SW|^2$ vanishes. The authors responded with yet another modification of the 4d KKLT model arXiv:1809.06618. However, for large $c$, this model suffers from an even worse problem: not only is there a point in the moduli space where $|D_SW|^2$ vanishes, there is also a region in the moduli space where $|D_SW|^2$ is negative. Meanwhile for small $c$ these models have dS vacua. We construct improved models, which are fully consistent for all values of parameters, just as the original version of the KKLT model using a nilpotent superfield. These models have a family of dS vacua for a broad range of parameter values. Thus, the results of the analysis of all presently available consistent generalizations of the 4d KKLT model, in the domain of their validity, confirm the existence of dS vacua in the KKLT scenario.



rate research

Read More

In the first part of this note we argue that ten dimensional consistency requirements in the form of a certain tadpole cancellation condition can be satisfied by KKLT type vacua of type IIB string theory. We explain that a new term of non-local nature is generated dynamically once supersymmetry is broken and ensures cancellation of the tadpole. It can be interpreted as the stress caused by the restoring force that the stabilization mechanism exerts on the volume modulus. In the second part, we explain that it is surprisingly difficult to engineer sufficiently long warped throats to prevent decompactification which are also small enough in size to fit into the bulk Calabi-Yau (CY). We give arguments that achieving this with reasonable amount of control may not be possible in generic CY compactifications while CYs with very non-generic geometrical properties might evade our conclusion.
In this note we revisit some of the recent 10d and 4d arguments suggesting that uplifting of supersymmetric AdS vacua leads to flattening of the potential, preventing formation of dS vacua. We explain why the corresponding 10d approach is inconclusive and requires considerable modifications. We also show that while the flattening effects may occur for some extreme values of the parameters, they do not prevent the formation of dS vacua within the range of validity of the 4d KKLT models. The KL version of the KKLT scenario based on a racetrack superpotential requires parametrically small uplifting, which is not affected by flattening. We show that this scenario is compatible with the weak gravity conjecture for a broad choice of parameters of the KL model. Thus, the results of our analysis do not support the recent swampland conjecture.
A three-step procedure is proposed in type IIA string theory to stabilize multiple moduli in a dS vacuum. The first step is to construct a progenitor model with a localized stable supersymmetric Minkowski vacuum, or a discrete set of such vacua. It can be done, for example, using two non-perturbative exponents in the superpotential for each modulus, as in the KL model. A large set of supersymmetric Minkowski vacua with strongly stabilized moduli is protected by a theorem on stability of these vacua in absence of flat directions. The second step involves a parametrically small downshift to a supersymmetric AdS vacuum, which can be achieved by a small change of the superpotential. The third step is an uplift to a dS vacuum with a positive cosmological constant using the $overline {D6}$-brane contribution. Stability of the resulting dS vacuum is inherited from the stability of the original supersymmetric Minkowski vacuum if the supersymmetry breaking in dS vacuum is parametrically small.
In recent years several approaches to quantum gravity have found evidence for a scale dependent spectral dimension of space-time varying from four at large scales to two at small scales of order of the Planck length. The first evidence came from numerical results on four-dimensional causal dynamical triangulations (CDT) [Ambjorn et al., Phys. Rev. Lett. 95 (2005) 171]. Since then little progress has been made in analytically understanding the numerical results coming from the CDT approach and showing that they remain valid when taking the continuum limit. Here we argue that the spectral dimension can be determined from a model with fewer degrees of freedom obtained from the CDTs by radial reduction. In the resulting toy model we can take the continuum limit analytically and obtain a scale dependent spectral dimension varying from four to two with scale and having functional behaviour exactly of the form which was conjectured on the basis of the numerical results.
We study fermionic bulk fields in the dS/CFT dualities relating ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space. These dualities specify the Hartle - Hawking wave function in terms of the partition function of deformations of the vector models. We evaluate this wave function in homogeneous minisuperspace models consisting of supersymmetry-breaking combinations of a half-integer spin field with either a scalar, a pseudoscalar or a metric squashing. The wave function appears to be well-behaved and globally peaked at or near the supersymmetric de Sitter vacuum, with a low amplitude for large deformations. Its behavior in the semiclassical limit qualitatively agrees with earlier bulk computations both for massless and massive fermionic fields.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا