Do you want to publish a course? Click here

Spinors in Supersymmetric dS/CFT

90   0   0.0 ( 0 )
 Added by Gerben Venken
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study fermionic bulk fields in the dS/CFT dualities relating ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to supersymmetric Vasiliev theories in four-dimensional de Sitter space. These dualities specify the Hartle - Hawking wave function in terms of the partition function of deformations of the vector models. We evaluate this wave function in homogeneous minisuperspace models consisting of supersymmetry-breaking combinations of a half-integer spin field with either a scalar, a pseudoscalar or a metric squashing. The wave function appears to be well-behaved and globally peaked at or near the supersymmetric de Sitter vacuum, with a low amplitude for large deformations. Its behavior in the semiclassical limit qualitatively agrees with earlier bulk computations both for massless and massive fermionic fields.



rate research

Read More

We put forward new explicit realisations of dS/CFT that relate ${cal N}=2$ supersymmetric Euclidean vector models with reversed spin-statistics in three dimensions to specific supersymmetric Vasiliev theories in four-dimensional de Sitter space. The partition function of the free supersymmetric vector model deformed by a range of low spin deformations that preserve supersymmetry appears to specify a well-defined wave function with asymptotic de Sitter boundary conditions in the bulk. In particular we find the wave function is globally peaked at undeformed de Sitter space, with a low amplitude for strong deformations. This suggests that supersymmetric de Sitter space is stable in higher-spin gravity and in particular free from ghosts. We speculate this is a limiting case of the de Sitter realizations in exotic string theories.
110 - Yasha Neiman 2017
This is a status report on a research program aimed at obtaining quantum-gravitational physics inside a cosmological horizon through dS/CFT, i.e. through a holographic description at past/future infinity of de Sitter space. The program aims to bring together two main elements. The first is the observation by Anninos, Hartman and Strominger that Vasilievs higher-spin gravity provides a working model for dS/CFT in 3+1 dimensions. The second is the proposal by Parikh, Savonije and Verlinde that dS/CFT may prove more tractable if one works in so-called elliptic de Sitter space - a folded-in-half version of global de Sitter where antipodal points have been identified. We review some relevant progress concerning quantum field theory on elliptic de Sitter space, higher-spin gravity and its holographic duality with a free vector model. We present our reasons for optimism that the approach outlined here will lead to a full holographic description of quantum (higher-spin) gravity in the causal patch of a de Sitter observer.
We study Lorentzian supersymmetric configurations in $D=4$ and $D=5$ gauged $mathcal{N}=2$ supergravity. We show that there are smooth $1/2$ BPS solutions which are asymptotically AdS$_{4}$ and AdS$_{5}$ with a planar boundary, a compact spacelike direction and with a Wilson line on that circle. There are solitons where the $S^{1}$ shrinks smoothly to zero in the interior, with a magnetic flux through the circle determined by the Wilson line, which are AdS analogues of the Melvin fluxtube. There is also a solution with a constant gauge field, which is pure AdS. Both solutions preserve half of the supersymmetries at a special value of the Wilson line. There is a phase transition between these two saddle-points as a function of the Wilson line precisely at the supersymmetric point. Thus, the supersymmetric solutions are degenerate, at least at the supergravity level. We extend this discussion to one of the Romans solutions in four dimensions when the Euclidean boundary is $S^{1}timesSigma_{g}$ where $Sigma_{g}$ is a Riemann surface with genus $g > 0$. We speculate that the supersymmetric state of the CFT on the boundary is dual to a superposition of the two degenerate geometries.
241 - Adrian David , Yasha Neiman 2020
We consider the holographic duality between 4d type-A higher-spin gravity and a 3d free vector model. It is known that the Feynman diagrams for boundary correlators can be encapsulated in an HS-algebraic twistorial expression. This expression can be evaluated not just on separate boundary insertions, but on entire finite source distributions. We do so for the first time, and find that the result Z_HS disagrees with the usual CFT partition function. While such disagreement was expected due to contact corrections, it persists even in their absence. We ascribe it to a confusion between on-shell and off-shell boundary calculations. In Lorentzian boundary signature, this manifests via wrong relative signs for Feynman diagrams with different permutations of the source points. In Euclidean, the signs are instead ambiguous, spoiling would-be linear superpositions. Framing the situation as a conflict between boundary locality and HS symmetry, we sacrifice locality and choose to take Z_HS seriously. We are rewarded by the dissolution of a long-standing pathology in higher-spin dS/CFT. Though we lose the connection to the local CFT, the precise form of Z_HS can be recovered from first principles, by demanding a spin-local boundary action.
Similarly as in AdS/CFT, the requirement that the action for spinors be stationary for solutions to the Dirac equation with fixed boundary conditions determines the form of the boundary term that needs to be added to the standard Dirac action in Kerr/CFT. We determine this boundary term and make use of it to calculate the two-point function for spinor fields in Kerr/CFT. This two-point function agrees with the correlator of a two dimensional relativistic conformal field theory.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا