Do you want to publish a course? Click here

Deep Reinforcement Learning for Wireless Sensor Scheduling in Cyber-Physical Systems

364   0   0.0 ( 0 )
 Added by Alex Leong
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios.

rate research

Read More

This work considers the problem of control and resource scheduling in networked systems. We present DIRA, a Deep reinforcement learning based Iterative Resource Allocation algorithm, which is scalable and control-aware. Our algorithm is tailored towards large-scale problems where control and scheduling need to act jointly to optimize performance. DIRA can be used to schedule general time-domain optimization based controllers. In the present work, we focus on control designs based on suitably adapted linear quadratic regulators. We apply our algorithm to networked systems with correlated fading communication channels. Our simulations show that DIRA scales well to large scheduling problems.
We consider networked control systems consisting of multiple independent controlled subsystems, operating over a shared communication network. Such systems are ubiquitous in cyber-physical systems, Internet of Things, and large-scale industrial systems. In many large-scale settings, the size of the communication network is smaller than the size of the system. In consequence, scheduling issues arise. The main contribution of this paper is to develop a deep reinforcement learning-based emph{control-aware} scheduling (textsc{DeepCAS}) algorithm to tackle these issues. We use the following (optimal) design strategy: First, we synthesize an optimal controller for each subsystem; next, we design a learning algorithm that adapts to the chosen subsystems (plants) and controllers. As a consequence of this adaptation, our algorithm finds a schedule that minimizes the emph{control loss}. We present empirical results to show that textsc{DeepCAS} finds schedules with better performance than periodic ones.
Multicasting in wireless systems is a natural way to exploit the redundancy in user requests in a Content Centric Network. Power control and optimal scheduling can significantly improve the wireless multicast networks performance under fading. However, the model based approaches for power control and scheduling studied earlier are not scalable to large state space or changing system dynamics. In this paper, we use deep reinforcement learning where we use function approximation of the Q-function via a deep neural network to obtain a power control policy that matches the optimal policy for a small network. We show that power control policy can be learnt for reasonably large systems via this approach. Further we use multi-timescale stochastic optimization to maintain the average power constraint. We demonstrate that a slight modification of the learning algorithm allows tracking of time varying system statistics. Finally, we extend the multi-timescale approach to simultaneously learn the optimal queueing strategy along with power control. We demonstrate scalability, tracking and cross layer optimization capabilities of our algorithms via simulations. The proposed multi-timescale approach can be used in general large state space dynamical systems with multiple objectives and constraints, and may be of independent interest.
We consider malicious attacks on actuators and sensors of a feedback system which can be modeled as additive, possibly unbounded, disturbances at the digital (cyber) part of the feedback loop. We precisely characterize the role of the unstable poles and zeros of the system in the ability to detect stealthy attacks in the context of the sampled data implementation of the controller in feedback with the continuous (physical) plant. We show that, if there is a single sensor that is guaranteed to be secure and the plant is observable from that sensor, then there exist a class of multirate sampled data controllers that ensure that all attacks remain detectable. These dual rate controllers are sampling the output faster than the zero order hold rate that operates on the control input and as such, they can even provide better nominal performance than single rate, at the price of higher sampling of the continuous output.
In Model-Based Design of Cyber-Physical Systems (CPS), it is often desirable to develop several models of varying fidelity. Models of different fidelity levels can enable mathematical analysis of the model, control synthesis, faster simulation etc. Furthermore, when (automatically or manually) transitioning from a model to its implementation on an actual computational platform, then again two differe
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا