Do you want to publish a course? Click here

DeepCAS: A Deep Reinforcement Learning Algorithm for Control-Aware Scheduling

158   0   0.0 ( 0 )
 Added by Burak Demirel
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

We consider networked control systems consisting of multiple independent controlled subsystems, operating over a shared communication network. Such systems are ubiquitous in cyber-physical systems, Internet of Things, and large-scale industrial systems. In many large-scale settings, the size of the communication network is smaller than the size of the system. In consequence, scheduling issues arise. The main contribution of this paper is to develop a deep reinforcement learning-based emph{control-aware} scheduling (textsc{DeepCAS}) algorithm to tackle these issues. We use the following (optimal) design strategy: First, we synthesize an optimal controller for each subsystem; next, we design a learning algorithm that adapts to the chosen subsystems (plants) and controllers. As a consequence of this adaptation, our algorithm finds a schedule that minimizes the emph{control loss}. We present empirical results to show that textsc{DeepCAS} finds schedules with better performance than periodic ones.



rate research

Read More

This work considers the problem of control and resource scheduling in networked systems. We present DIRA, a Deep reinforcement learning based Iterative Resource Allocation algorithm, which is scalable and control-aware. Our algorithm is tailored towards large-scale problems where control and scheduling need to act jointly to optimize performance. DIRA can be used to schedule general time-domain optimization based controllers. In the present work, we focus on control designs based on suitably adapted linear quadratic regulators. We apply our algorithm to networked systems with correlated fading communication channels. Our simulations show that DIRA scales well to large scheduling problems.
In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios.
Recent breakthroughs in Go play and strategic games have witnessed the great potential of reinforcement learning in intelligently scheduling in uncertain environment, but some bottlenecks are also encountered when we generalize this paradigm to universal complex tasks. Among them, the low efficiency of data utilization in model-free reinforcement algorithms is of great concern. In contrast, the model-based reinforcement learning algorithms can reveal underlying dynamics in learning environments and seldom suffer the data utilization problem. To address the problem, a model-based reinforcement learning algorithm with attention mechanism embedded is proposed as an extension of World Models in this paper. We learn the environment model through Mixture Density Network Recurrent Network(MDN-RNN) for agents to interact, with combinations of variational auto-encoder(VAE) and attention incorporated in state value estimates during the process of learning policy. In this way, agent can learn optimal policies through less interactions with actual environment, and final experiments demonstrate the effectiveness of our model in control problem.
A major challenge in modern reinforcement learning (RL) is efficient control of dynamical systems from high-dimensional sensory observations. Learning controllable embedding (LCE) is a promising approach that addresses this challenge by embedding the observations into a lower-dimensional latent space, estimating the latent dynamics, and utilizing it to perform control in the latent space. Two important questions in this area are how to learn a representation that is amenable to the control problem at hand, and how to achieve an end-to-end framework for representation learning and control. In this paper, we take a few steps towards addressing these questions. We first formulate a LCE model to learn representations that are suitable to be used by a policy iteration style algorithm in the latent space. We call this model control-aware representation learning (CARL). We derive a loss function for CARL that has close connection to the prediction, consistency, and curvature (PCC) principle for representation learning. We derive three implementations of CARL. In the offline implementation, we replace the locally-linear control algorithm (e.g.,~iLQR) used by the existing LCE methods with a RL algorithm, namely model-based soft actor-critic, and show that it results in significant improvement. In online CARL, we interleave representation learning and control, and demonstrate further gain in performance. Finally, we propose value-guided CARL, a variation in which we optimize a weighted version of the CARL loss function, where the weights depend on the TD-error of the current policy. We evaluate the proposed algorithms by extensive experiments on benchmark tasks and compare them with several LCE baselines.
We explore the use of deep reinforcement learning to provide strategies for long term scheduling of hydropower production. We consider a use-case where the aim is to optimise the yearly revenue given week-by-week inflows to the reservoir and electricity prices. The challenge is to decide between immediate water release at the spot price of electricity and storing the water for later power production at an unknown price, given constraints on the system. We successfully train a soft actor-critic algorithm on a simplified scenario with historical data from the Nordic power market. The presented model is not ready to substitute traditional optimisation tools but demonstrates the complementary potential of reinforcement learning in the data-rich field of hydropower scheduling.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا