No Arabic abstract
We consider malicious attacks on actuators and sensors of a feedback system which can be modeled as additive, possibly unbounded, disturbances at the digital (cyber) part of the feedback loop. We precisely characterize the role of the unstable poles and zeros of the system in the ability to detect stealthy attacks in the context of the sampled data implementation of the controller in feedback with the continuous (physical) plant. We show that, if there is a single sensor that is guaranteed to be secure and the plant is observable from that sensor, then there exist a class of multirate sampled data controllers that ensure that all attacks remain detectable. These dual rate controllers are sampling the output faster than the zero order hold rate that operates on the control input and as such, they can even provide better nominal performance than single rate, at the price of higher sampling of the continuous output.
Demand response (DR) is becoming increasingly important as the volatility on the grid continues to increase. Current DR approaches are completely manual and rule-based or involve deriving first principles based models which are extremely cost and time prohibitive to build. We consider the problem of data-driven end-user DR for large buildings which involves predicting the demand response baseline, evaluating fixed rule based DR strategies and synthesizing DR control actions. We provide a model based control with regression trees algorithm (mbCRT), which allows us to perform closed-loop control for DR strategy synthesis for large commercial buildings. Our data-driven control synthesis algorithm outperforms rule-based DR by $17%$ for a large DoE commercial reference building and leads to a curtailment of $380$kW and over $$45,000$ in savings. Our methods have been integrated into an open source tool called DR-Advisor, which acts as a recommender system for the buildings facilities manager and provides suitable control actions to meet the desired load curtailment while maintaining operations and maximizing the economic reward. DR-Advisor achieves $92.8%$ to $98.9%$ prediction accuracy for 8 buildings on Penns campus. We compare DR-Advisor with other data driven methods and rank $2^{nd}$ on ASHRAEs benchmarking data-set for energy prediction.
An analytical approach for a dynamic cyber-security problem that captures progressive attacks to a computer network is presented. We formulate the dynamic security problem from the defenders point of view as a supervisory control problem with imperfect information, modeling the computer networks operation by a discrete event system. We consider a min-max performance criterion and use dynamic programming to determine, within a restricted set of policies, an optimal policy for the defender. We study and interpret the behavior of this optimal policy as we vary certain parameters of the supervisory control problem.
In Model-Based Design of Cyber-Physical Systems (CPS), it is often desirable to develop several models of varying fidelity. Models of different fidelity levels can enable mathematical analysis of the model, control synthesis, faster simulation etc. Furthermore, when (automatically or manually) transitioning from a model to its implementation on an actual computational platform, then again two differe
Freight transportation is of outmost importance for our society and is continuously increasing. At the same time, transporting goods on roads accounts for about 26% of all energy consumption and 18% of all greenhouse gas emissions in the European Union. Despite the influence the transportation system has on our energy consumption and the environment, road transportation is mainly done by individual long-haulage trucks with no real-time coordination or global optimization. In this paper, we review how modern information and communication technology supports a cyber-physical transportation system architecture with an integrated logistic system coordinating fleets of trucks traveling together in vehicle platoons. From the reduced air drag, platooning trucks traveling close together can save about 10% of their fuel consumption. Utilizing road grade information and vehicle-to-vehicle communication, a safe and fuel-optimized cooperative look-ahead control strategy is implemented on top of the existing cruise controller. By optimizing the interaction between vehicles and platoons of vehicles, it is shown that significant improvements can be achieved. An integrated transport planning and vehicle routing in the fleet management system allows both small and large fleet owners to benefit from the collaboration. A realistic case study with 200 heavy-duty vehicles performing transportation tasks in Sweden is described. Simulations show overall fuel savings at more than 5% thanks to coordinated platoon planning. It is also illustrated how well the proposed cooperative look-ahead controller for heavy-duty vehicle platoons manages to optimize the velocity profiles of the vehicles over a hilly segment of the considered road network.
In many Cyber-Physical Systems, we encounter the problem of remote state estimation of geographically distributed and remote physical processes. This paper studies the scheduling of sensor transmissions to estimate the states of multiple remote, dynamic processes. Information from the different sensors have to be transmitted to a central gateway over a wireless network for monitoring purposes, where typically fewer wireless channels are available than there are processes to be monitored. For effective estimation at the gateway, the sensors need to be scheduled appropriately, i.e., at each time instant one needs to decide which sensors have network access and which ones do not. To address this scheduling problem, we formulate an associated Markov decision process (MDP). This MDP is then solved using a Deep Q-Network, a recent deep reinforcement learning algorithm that is at once scalable and model-free. We compare our scheduling algorithm to popular scheduling algorithms such as round-robin and reduced-waiting-time, among others. Our algorithm is shown to significantly outperform these algorithms for many example scenarios.