No Arabic abstract
The Chandra observations of several gravitationally lensed quasars show evidence for flux and spectral variability of the X-ray emission that is uncorrelated between images and is thought to result from the microlensing by stars in the lensing galaxy. We report here on the most detailed modeling of such systems to date, including simulations of the emission of the Fe K-alpha fluorescent radiation from the accretion disk with a general relativistic ray tracing code, the use of realistic microlensing magnification maps derived from inverse ray shooting calculations, and the simulation of the line detection biases. We use lensing and black hole parameters appropriate for the quadruply lensed quasar RX J1131-1231, and compare the simulated results with the observational results. The simulations cannot fully reproduce the distribution of the detected line energies indicating that some of the assumptions underlying the simulations are not correct, or that the simulations are missing some important physics. We conclude by discussing several possible explanations.
Recent work has demonstrated the potential of gravitationally lensed quasars to extend measurements of black hole spin out to high-redshift with the current generation of X-ray observatories. Here we present an analysis of a large sample of 27 lensed quasars in the redshift range 1.0<z<4.5 observed with Chandra, utilizing over 1.6 Ms of total observing time, focusing on the rest-frame iron K emission from these sources. Although the X-ray signal-to-noise (S/N) currently available does not permit the detection of iron emission from the inner accretion disk in individual cases in our sample, we find significant structure in the stacked residuals. In addition to the narrow core, seen almost ubiquitously in local AGN, we find evidence for an additional underlying broad component from the inner accretion disk, with a clear red wing to the emission profile. Based on simulations, we find the detection of this broader component to be significant at greater than the 3-sigma level. This implies that iron emission from the inner disk is relatively common in the population of lensed quasars, and in turn further demonstrates that, with additional observations, this population represents an opportunity to significantly extend the sample of AGN spin measurements out to high-redshift.
We present spectroscopic confirmation of two new lensed quasars via data obtained at the 6.5m Magellan/Baade Telescope. The lens candidates have been selected from the Dark Energy Survey (DES) and WISE based on their multi-band photometry and extended morphology in DES images. Images of DES J0115-5244 show two blue point sources at either side of a red galaxy. Our long-slit data confirm that both point sources are images of the same quasar at $z_{s}=1.64.$ The Einstein Radius estimated from the DES images is $0.51$. DES J2200+0110 is in the area of overlap between DES and the Sloan Digital Sky Survey (SDSS). Two blue components are visible in the DES and SDSS images. The SDSS fiber spectrum shows a quasar component at $z_{s}=2.38$ and absorption compatible with Mg II and Fe II at $z_{l}=0.799$, which we tentatively associate with the foreground lens galaxy. The long-slit Magellan spectra show that the blue components are resolved images of the same quasar. The Einstein Radius is $0.68$ corresponding to an enclosed mass of $1.6times10^{11},M_{odot}.$ Three other candidates were observed and rejected, two being low-redshift pairs of starburst galaxies, and one being a quasar behind a blue star. These first confirmation results provide an important empirical validation of the data-mining and model-based selection that is being applied to the entire DES dataset.
We present V and R photometry of the gravitationally lensed quasars WFI2033-4723 and HE0047-1756. The data were taken by the MiNDSTEp collaboration with the 1.54 m Danish telescope at the ESO La Silla observatory from 2008 to 2012. Differential photometry has been carried out using the image subtraction method as implemented in the HOTPAnTS package, additionally using GALFIT for quasar photometry. The quasar WFI2033-4723 showed brightness variations of order 0.5 mag in V and R during the campaign. The two lensed components of quasar HE0047-1756 varied by 0.2-0.3 mag within five years. We provide, for the first time, an estimate of the time delay of component B with respect to A of $Delta t= 7.6pm1.8$ days for this object. We also find evidence for a secular evolution of the magnitude difference between components A and B in both filters, which we explain as due to a long-duration microlensing event. Finally we find that both quasars WFI2033-4723 and HE0047-1756 become bluer when brighter, which is consistent with previous studies.
The analysis of the Chandra X-ray observations of the gravitationally lensed quasar RX J1131-1231 revealed the detection of multiple and energy-variable spectral peaks. The spectral variability is thought to result from the microlensing of the Fe K-alpha emission, selectively amplifying the emission from certain regions of the accretion disk with certain effective frequency shifts of the Fe K-alpha line emission. In this paper, we combine detailed simulations of the emission of Fe K-alpha photons from the accretion disk of a Kerr black hole with calculations of the effect of gravitational microlensing on the observed energy spectra. The simulations show that microlensing can indeed produce multiply peaked energy spectra. We explore the dependence of the spectral characteristics on black hole spin, accretion disk inclination, corona height, and microlensing amplification factor, and show that the measurements can be used to constrain these parameters. We find that the range of observed spectral peak energies of QSO RX J1131-1231 can only be reproduced for black hole inclinations exceeding 70 degree and for lamppost corona heights of less than 30 gravitational radii above the black hole. We conclude by emphasizing the scientific potential of studies of the microlensed Fe K$alpha$ quasar emission and the need for more detailed modeling that explores how the results change for more realistic accretion disk and corona geometries and microlensing magnification patterns. A full analysis should furthermore model the signal-to-noise ratio of the observations and the resulting detection biases.
The jets image modelling of gravitationally lensed sources have been performed. Several basic models of the lens mass distribution were considered, in particular, a singular isothermal ellipsoid, an isothermal ellipsoid with the core, different multi-components models with the galactic disk, halo and bulge. The obtained jet images were compared as with each other as with results of observations. A significant dependence of the Hubble constant on the model parameters was revealed for B0218+357, when the circular structure was took into account.