Do you want to publish a course? Click here

Interaction and Identification of the Meson-Baryon molecules

74   0   0.0 ( 0 )
 Added by Dharmesh Rathaud
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The challenges with the molecular model of the multiquark systems are the identification of the hadronic molecules and the interaction between two color neutral hadrons. We study the di-hadronic molecular systems with proposed interaction potential as s-wave one boson exchange potential along with Screen Yukawa-like potential, and arrived with the proposal that within hadronic molecule the two color neutral hadrons experience the dipole-like interaction. The present study is the continuation of our previous study cite{arxiv-Rathaud-penta}. With the proposed interaction potential, the mass spectra of $Sigma_{s}K^{*}$, $Sigma_{c}K^{*}$, $Sigma_{b}K^{*}$, $Sigma_{s}D^{*}$, $Sigma_{c}D^{*}$, $Sigma_{b}D^{*}$, $Sigma_{s}B^{*}$, $Sigma_{c}B^{*}$, $Sigma_{b}B^{*}$, $Xi_{s}K^{*}$, $Xi_{c}K^{*}$, $Xi_{b}K^{*}$, $Xi_{s}D^{*}$, $Xi_{c}D^{*}$, $Xi_{b}D^{*}$, $Xi_{s}B^{*}$, $Xi_{c}B^{*}$, $Xi_{b}B^{*}$ meson-baryon molecules are predicted. The Weinberg compositeness theorem which provides clue for the compositeness of the state is used for determination of the scattering length and effective range. The present study predict $P_{c}(4450)$ pentaquark sate as $Sigma_{c}D^{*}$ molecule with $I(J^{P})=frac{1}{2}(frac{3}{2}^{-})$. The formalism also predicts some very interesting open as well as hidden flavour near threshold molecular pentaquark states.



rate research

Read More

We study the interesting problem of interaction and identification of the hadronic molecules which seem to be deuteron-like structure. In particular, we propose a binding mechanism in which One Boson Exchange Potential plus Yukawa screen-like potential is applied in their relative s-wave state. We propose the dipole-like interaction between two color neutral states to form a hadronic molecule. For the identification of the hadronic molecules, the Weinbergs compositeness theorem is used to distinguish the molecule from confined (elementary) state. The present formalism predict some di-hadronic molecular states, involving quarks (s, c, b or $overline{s}$, $overline{c}$, $overline{b}$) as a constituents, namely, $pn$, $Koverline{K}$, $rho overline{rho}$, $K^{*}overline{K^{*}}$, $Doverline{D^{*}}$($overline{D}D^{*}$), $D^{*}overline{D^{*}}$, $Boverline{B^{*}}$, $B^{*}overline{B^{*}}$, $D^{*pm}overline{D_{1}^{0}}$, $ D^{0}overline{K^{pm}}$, $D^{*0}overline{K^{pm}}$, with their possible quantum numbers.
Starting from a molecular picture for the X(3872) resonance, this state and its J^{PC}=2++ HQSS partner [X2(4012)] are analyzed within a model which incorporates possible mixings with 2P charmonium states. Since it is reasonable to expect the bare chi_{c1}(2P) to be located above the Dbar D* threshold, but relatively close to it, the presence of the charmonium state provides an effective attraction that will contribute to bind the X(3872), but it will not appear in the 2++ sector. Indeed in this latter sector, the chi_{c2}(2P) should provide an effective small repulsion, because it is placed well below the D*bar D* threshold. We show how the 1++ and 2++ bare charmonium poles are modified due to the D(*)bar D(*) loop effects, and the first one is moved to the complex plane. The meson loops produce, besides some shifts in the masses of the charmonia, a finite width for the 1++ dressed charmonium state. On the other hand, the X(3872) and X2(4012) start developing some charmonium content, which is estimated by means of the compositeness Weinberg sum-rule. We also show that for X(3872) molecular probabilities of around 70-90 %, the X2 resonance destabilizes and disappears from the spectrum, becoming either a virtual state or being located deep into the complex plane, with decreasing influence in the D* bar D* scattering line.
We consider meson-baryon interactions in S-wave with strangeness -1. This is a sector populated by plenty of resonances interacting in several two-body coupled channels. We consider a large set of experimental data, where the recent experiments are remarkably accurate. This requires a sound theoretical description to account for all the data and we employ Unitary Chiral Perturbation Theory up to and including O(p^2). The spectroscopy of our solutions is studied within this approach, discussing the rise from the pole content of two Lambda(1405) resonances and of the Lambda(1670), Lambda(1800), Sigma(1480), Sigma(1620) and Sigma(1750). We finally argue about our preferred fit.
We report recent results on the dynamics of strange hadrons in two-body reactions relevant for near-threshold production in heavy-ion collisions at GSI/FAIR and NICA-Dubna. In particular, $bar K N$ scattering in hot and dense nuclear matter is studied within a chiral unitary framework in coupled channels, setting up the starting point for implementations in microscopic off-shell transport approaches. We focus on the calculation of transition rates with special attention to the excitation of hyperon resonances and isospin effects. Additionally, we explore unconventional strangeness generation by meson-meson and meson-baryon interactions in connection with recent HADES observations of deep sub-threshold $phi$ and $Xi$ production.
103 - T. Melde , W. Plessas , 2008
We present a new classification scheme of baryon ground states and resonances into SU(3) flavor multiplets. The scheme is worked out along a covariant formalism with relativistic constituent quark models and it relies on detailed investigations of the baryon spectra, the spin-flavor structure of the baryon eigenstates, the behaviour of their probability density distributions as well as covariant predictions for mesonic decay widths. The results are found to be quite independent of the specific types of relativistic constituent quark models employed. It turns out that a consistent classification requires to include also resonances that are presently reported from experiment with only two-star status.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا