Do you want to publish a course? Click here

Strange meson-baryon interaction in hot and dense medium: recent progress for a road to GSI/FAIR

101   0   0.0 ( 0 )
 Added by Daniel Cabrera
 Publication date 2015
  fields
and research's language is English




Ask ChatGPT about the research

We report recent results on the dynamics of strange hadrons in two-body reactions relevant for near-threshold production in heavy-ion collisions at GSI/FAIR and NICA-Dubna. In particular, $bar K N$ scattering in hot and dense nuclear matter is studied within a chiral unitary framework in coupled channels, setting up the starting point for implementations in microscopic off-shell transport approaches. We focus on the calculation of transition rates with special attention to the excitation of hyperon resonances and isospin effects. Additionally, we explore unconventional strangeness generation by meson-meson and meson-baryon interactions in connection with recent HADES observations of deep sub-threshold $phi$ and $Xi$ production.



rate research

Read More

The challenges with the molecular model of the multiquark systems are the identification of the hadronic molecules and the interaction between two color neutral hadrons. We study the di-hadronic molecular systems with proposed interaction potential as s-wave one boson exchange potential along with Screen Yukawa-like potential, and arrived with the proposal that within hadronic molecule the two color neutral hadrons experience the dipole-like interaction. The present study is the continuation of our previous study cite{arxiv-Rathaud-penta}. With the proposed interaction potential, the mass spectra of $Sigma_{s}K^{*}$, $Sigma_{c}K^{*}$, $Sigma_{b}K^{*}$, $Sigma_{s}D^{*}$, $Sigma_{c}D^{*}$, $Sigma_{b}D^{*}$, $Sigma_{s}B^{*}$, $Sigma_{c}B^{*}$, $Sigma_{b}B^{*}$, $Xi_{s}K^{*}$, $Xi_{c}K^{*}$, $Xi_{b}K^{*}$, $Xi_{s}D^{*}$, $Xi_{c}D^{*}$, $Xi_{b}D^{*}$, $Xi_{s}B^{*}$, $Xi_{c}B^{*}$, $Xi_{b}B^{*}$ meson-baryon molecules are predicted. The Weinberg compositeness theorem which provides clue for the compositeness of the state is used for determination of the scattering length and effective range. The present study predict $P_{c}(4450)$ pentaquark sate as $Sigma_{c}D^{*}$ molecule with $I(J^{P})=frac{1}{2}(frac{3}{2}^{-})$. The formalism also predicts some very interesting open as well as hidden flavour near threshold molecular pentaquark states.
The one loop self energy of the neutral $rho$ meson is obtained for the effective $rhopipi$ and $rho NN$ interaction at finite temperature and density in the presence of a constant background magnetic field of arbitrary strength. In our approach, the eB-dependent vacuum part of the self energy is extracted by means of dimensional regularization where the ultraviolet divergences corresponding to the pure vacuum self energy manifest as the pole singularities of gamma as well as Hurwitz zeta functions. This improved regularization procedure consistently reproduces the expected results in the vanishing magnetic field limit and can be used quite generally in other self energy calculations dealing with arbitrary magnetic field strength. In presence of the external magnetic field, the general Lorentz structure for the in-medium vector boson self energy is derived which can also be implemented in case of the gauge bosons such as photons and gluons. It has been shown that with vanishing perpendicular momentum of the external particle, essentially two form factors are sufficient to describe the self energy completely. Consequently, two distinct modes are observed in the study of the effective mass, dispersion relations and the spectral function of $rho^0$ where one of the modes possesses two fold degeneracy. For large baryonic chemical potential, it is observed that the critical magnetic field required to block the $rho^0rightarrowpi^+pi^-$ decay channel increases significantly with temperature. However, in case of smaller values reaching down to vanishing chemical potential, the critical field follows the opposite trend.
We investigate the hidden strange light baryon-meson system. With the resonating-group method, two bound states, $eta-N$ and $phi-N$, are found in the quark delocalization color screening model. Focusing on the $phi-N$ bound state around 1950,MeV, we obtain the total decay width of about 4,MeV by calculating the phase shifts in the resonance scattering processes. To study the feasibility of an experimental search for the $phi-N$ bound state, we perform a Monte Carlo simulation of the bound state production with an electron beam and a gold target. In the simulation, we use the CLAS12 detector with the Forward Tagger and the BONUS12 detector in Hall B at Jefferson Lab. Both the signal and the background channels are estimated. We demonstrate that the signal events can be separated from the background with some momentum cuts. Therefore it is feasible to experimentally search for the $phi-N$ bound state through the near threshold $phi$ meson production from heavy nuclei.
132 - K. Tsushima 2018
In-medium properties of the low-lying strange, charm, and bottom baryons in symmetric nuclear matter are studied in the quark-meson coupling (QMC) model. Results for the Lorentz-scalar effective masses, mean field potentials felt by the light quarks in the baryons, in-medium bag radii, and the lowest mode bag eigenvalues are presented for those calculated using the updated data. This study completes the in-medium properties of the low-lying baryons in symmetric nuclear matter in the QMC model, for the strange, charm and bottom baryons which contain one or two strange, one charm or one bottom quarks, as well as at least one light quark. Highlight is the prediction of the bottom baryon Lorentz-scalar effective masses, namely, the Lorentz-scalar effective mass of $Sigma_b$ becomes smaller than that of $Xi_b$ at moderate nuclear matter density, $m^*_{Sigma_b} < m^*_{Xi_b}$, although in vacuum $m_{Sigma_b} > m_{Xi_b}$. We study further the effects of the repulsive Lorentz-vector potentials on the excitation (total) energies of these bottom baryons.
In this article, we have explored the very important quantity of lepton pair production from a hot and dense QCD medium in presence of an arbitrary magnetic field for simultaneous nonzero values of both the parallel and perpendicular components of momentum. As opposed to the zero magnetic field case (the so-called Born rate) or the lowest Landau level approximated rate, where only the annihilation process contributes, here we observe contributions also arising out of the quark and antiquark decay processes. We found the encouraging result of considerable enhancement of lepton pair production in presence of a magnetic field. We further decompose the total rate into different physical processes and make interesting observations for both zero and nonzero baryon density.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا