Do you want to publish a course? Click here

Symmetries, charges and conservation laws at causal diamonds in general relativity

100   0   0.0 ( 0 )
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

We study the covariant phase space of vacuum general relativity at the null boundary of causal diamonds. The past and future components of such a null boundary each have an infinite-dimensional symmetry algebra consisting of diffeomorphisms of the $2$-sphere and boost supertranslations corresponding to angle-dependent rescalings of affine parameter along the null generators. Associated to these symmetries are charges and fluxes obtained from the covariant phase space formalism using the prescription of Wald and Zoupas. By analyzing the behavior of the spacetime metric near the corners of the causal diamond, we show that the fluxes are also Hamiltonian generators of the symmetries on the phase space. In particular, the supertranslation fluxes yield an infinite family of boost Hamiltonians acting on the gravitational data of causal diamonds. We show that the smoothness of the vector fields representing such symmetries at the bifurcation edge of the causal diamond implies suitable matching conditions between the symmetries on the past and future components of the null boundary. Similarly, the smoothness of the spacetime metric implies that the fluxes of all such symmetries is conserved between the past and future components of the null boundary. This establishes an infinite set of conservation laws for finite subregions in gravity analogous to those at null infinity. We also show that the symmetry algebra at the causal diamond has a non-trivial center corresponding to constant boosts. The central charges associated to these constant boosts are proportional to the area of the bifurcation edge, for any causal diamond, in analogy with the Wald entropy formula.



rate research

Read More

329 - J. Adamek 2016
This work refers to the new formula for the superpotential Uikl in conservation laws in general relativity satisfying the integral and differential conservation laws within the Schwarzschild metric. The new superpotential is composed of two terms. The first term is based on Mollers concept and its a function of the metric gik and its first derivative only. The second term is the antisymmetric tensor density of weight plus one and it consists of higher derivatives of the metric gik. Although the new superpotential consists of higher derivatives of the metric gik it might bring a new evaluation of the conservative quantities in general relativity
We present a precise definition of a conserved quantity from an arbitrary covariantly conserved current available in a general curved spacetime with Killing vectors. This definition enables us to define energy and momentum for matter by the volume integral. As a result we can compute charges of Schwarzschild and BTZ black holes by the volume integration of a delta function singularity. Employing the definition we also compute the total energy of a static compact star. It contains both the gravitational mass known as the Misner-Sharp mass in the Oppenheimer-Volkoff equation and the gravitational binding energy. We show that the gravitational binding energy has the negative contribution at maximum by 68% of the gravitational mass in the case of a constant density. We finally comment on a definition of generators associated with a vector field on a general curved manifold.
82 - David Langlois IAP 2001
We consider the collision of self-gravitating n-branes in a (n+2)-dimensional spacetime. We show that there is a geometrical constraint which can be expressed as a simple sum rule for angles characterizing Lorentz boosts between branes and the intervening spacetime regions. This constraint can then be re-interpreted as either energy or momentum conservation at the collision.
Following the recent work of Henneaux and Troessaert, which revisits the problem of spacetime symmetries at spatial infinity, we analyze this problem using the Bondi metric without determinant condition as our starting point. It turns out that in this case the symmetries at spatial infinity form the BMS symmetry appended with an additional infinite set of abelian symmetries. We furthermore find that imposing the determinant condition to the Bondi metric would result in a drastic reduction of symmetries, with no spatial (super) translations present.
121 - Michele Arzano 2020
It is shown that a general radial conformal Killing vector in Minkowski space-time can be associated to a generator of time evolution in conformal quantum mechanics. Among these conformal Killing vectors one finds a class which maps causal diamonds in Minkowski space-time into themselves. The flow of such Killing vectors describes worldlines of accelerated observers with a finite lifetime within the causal diamond. Time evolution of static diamond observers is equivalent to time evolution in conformal quantum mechanics governed by a hyperbolic Hamiltonian and covering only a segment of the time axis. This indicates that the Unruh temperature perceived by static diamond observers in the vacuum state of inertial observers in Minkowski space can be obtained from the behaviour of the two-point functions of conformal quantum mechanics.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا