No Arabic abstract
In this paper we establish a relation between the non-linearly conserved Newman-Penrose charges and certain subleading terms in a large-$r$ expansion of the BMS charges in an asymptotically-flat spacetime. We define the subleading BMS charges by considering a $1/r$-expansion of the Barnich-Brandt prescription for defining asymptotic charges in an asymptotically-flat spacetime. At the leading order, i.e. $1/r^0$, one obtains the standard BMS charges, which would be integrable and conserved in the absence of a flux term at null infinity, corresponding to gravitational radiation, or Bondi news. At subleading orders, analogous terms in general provide obstructions to the integrability of the corresponding charges. Since the subleading terms are defined close to null infinity, but vanish actually at infinity, the analogous obstructions are not associated with genuine Bondi news. One may instead describe them as corresponding to fake news. At order $r^{-3}$, we find that a set of integrable charges can be defined and that these are related to the ten non-linearly conserved Newman-Penrose charges.
We supplement the recently found dual gravitational charges with dual charges for the whole BMS symmetry algebra. Furthermore, we extend the dual charges away from null infinity, defining subleading dual charges. These subleading dual charges complement the subleading BMS charges in the literature and together account for all the Newman-Penrose charges.
We classify the asymptotic charges of a class of polyhomogeneous asymptotically-flat spacetimes with finite shear, generalising recent results on smooth asymptotically-flat spacetimes. Polyhomogenous spacetimes are a formally consistent class of spacetimes that do not satisfy the well-known peeling property. As such, they constitute a more physical class of asymptotically-flat spacetimes compared to the smooth class. In particular, we establish that the generalised conserved non-linear Newman-Penrose charges that are known to exist for such spacetimes are a subset of asymptotic BMS charges.
BMS group (and its various generalizations) at null infinity have been studied extensively in the literature as the symmetry group of asymptotically flat spacetimes. The intricate relationship between soft theorems and the BMS symmetries have also motivated the definition of such asymptotic symmetries to time-like infinity. Although the vector fields that generate the (generalized) BMS algebra at time-like infinity was defined in the literature, the algebra has not been investigated. In this paper, we fill this gap. We show that the super-translations and vector fields that generate sphere diffeomorphisms close under the modified Lie bracket proposed by Barnich et al.
We argue that, in a theory of quantum gravity in a four dimensional asymptotically flat spacetime, all information about massless excitations can be obtained from an infinitesimal neighbourhood of the past boundary of future null infinity and does not require observations over all of future null infinity. Moreover, all information about the state that can be obtained through observations near a cut of future null infinity can also be obtained from observations near any earlier cut although the converse is not true. We provide independent arguments for these two assertions. Similar statements hold for past null infinity. These statements have immediate implications for the information paradox since they suggest that the fine-grained von Neumann entropy of the state defined on a segment $(-infty,u)$ of future null infinity is independent of u. This is very different from the oft-discussed Page curve that this entropy is sometimes expected to obey. We contrast our results with recent discussions of the Page curve in the context of black hole evaporation, and also discuss the relation of our results to other proposals for holography in flat space.
We give two double copy prescriptions which construct asymptotically flat solutions in gravity from asymptotically flat gauge fields. The first prescription applies to radiative fields, which are non-linear vacuum solutions determined by characteristic data at null infinity. For any two such radiative gauge fields (linear or non-linear), the characteristic data of a radiative metric, dilaton and axion is constructed by a simple `squaring procedure, giving a classical double copy at the level of radiation fields. We demonstrate the procedure with several examples where the characteristic data can be explicitly integrated; for linear fields this also sheds light on the twistorial description of Weyl double copy. Our second prescription applies to all asymptotically flat fields at the level of their asymptotic equations of motion: we give a map between any solution of the asymptotic Maxwell equations and any solution of the asymptotic Einstein equations at null infinity. This also extends to the asymptotic charges and their duals, preserves the soft and hard sectors between gauge theory and gravity, and is related to the usual notion of double copy in scattering amplitudes.