Do you want to publish a course? Click here

17,000 %/W Second Harmonic Conversion Efficiency in Single Crystalline Aluminum Nitride Microresonators

84   0   0.0 ( 0 )
 Added by Alexander Bruch
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

High quality factor optical microcavities have been employed in a variety of material systems to enhance nonlinear optical interactions. While single-crystalline aluminum nitride microresonators have recently emerged as a low loss platform for integrated nonlinear optics such as four wave mixing and Raman lasing, few studies have investigated this material for second-harmonic generation. In this Letter, we demonstrate an optimized fabrication of dually-resonant phase-matched ring resonators from epitaxial aluminum nitride thin films. An unprecendented second-harmonic generation efficiency of 17,000%/W is obtained in the low power regime and pump depletion is observed at a relatively low input power of 3.5 mW. This poses epitaxial aluminum nitride as the highest efficiency second-harmonic generator among current integrated platforms.



rate research

Read More

223 - John R. Daniel , Shan-Wen Tsai , 2020
The second-harmonic generation process of a focused laser beam inside a nonlinear crystal is described by the Boyd-Kleinman theory. Calculating the actual conversion efficiency and upconverted power requires the solution of a double integral that is analytically intractable. We provide an expression that predicts the exact gain coefficient within an error margin of less than 2% over several orders of magnitude of the confocal parameter and as a function of the walk-off parameter. Our result allows for readily tuning the beam parameters to optimize the performance of the upconversion process and improve optical system designs.
Second harmonic generation (SHG), as one of the most significant c{hi}(2) nonlinear optical processes, plays crucial roles in a broad variety of optical and photonic applications. Designing various delicate schemes to achieve highly efficient SHG has become a long standing and challenging topic in field of nonlinear optics. Despite numerous success on SHG based on birefringent phase matching and quasi-phase matching, so far, modal phase matching (MPM) for SHG in tightly light-confined structures has still in its infancy. Here, we propose a new scheme to realize highly-efficient SHG via MPM by using a nanophotonic LiNbO3 thin-film waveguide consists of two bonded layers with internally reversed polarizations. In such a dual-layer ridge waveguide based on lithium niobate on insulator, upon optical excitation at 1574.6 nm, we observe SHG at 787.3 nm with ultrahigh conversion efficiency of 5,540% /W/cm/cm experimentally. This work advances our understanding on modal-phase-matched SHG and other quadratic optical nonlinear process, offering additional strategies for development of high-performance nonlinear photonic devices in on-chip platforms.
We report the first investigation on continuous-wave Raman lasing in high-quality-factor aluminum nitride (AlN) microring resonators. Although wurtzite AlN is known to exhibit six Raman-active phonons, single-mode Raman lasing with low threshold and high slope efficiency is demonstrated. Selective excitation of A$_1^mathrm{TO}$ and E$_2^mathrm{high}$ phonons with Raman shifts of $sim$612 and 660 cm$^{-1}$ is observed by adjusting the polarization of the pump light. A theoretical analysis of Raman scattering efficiency within ${c}$-plane (0001) of AlN is carried out to help account for the observed lasing behavior. Bidirectional lasing is experimentally confirmed as a result of symmetric Raman gain in micro-scale waveguides. Furthermore, second-order Raman lasing with unparalleled output power of $sim$11.3 mW is obtained, which offers the capability to yield higher order Raman lasers for mid-infrared applications.
Development of chip-scale optical frequency comb with the coverage from ultra-violet (UV) to mid-infrared (MIR) wavelength is of great significance. To expand the comb spectrum into the challenging UV region, a material platform with high UV transparency is crucial. In this paper, crystalline aluminum nitride (AlN)-onsapphire film is demonstrated for efficient Kerr frequency comb generation. Near-infrared (NIR) comb with nearly octave-spanning coverage and low parametric threshold is achieved in continuous-wave pumped high-quality-factor AlN microring resonators. The competition between stimulated Raman scattering (SRS) and hyperparametric oscillation is investigated, along with broadband comb generation via Raman-assisted four-wave mixing (FWM). Thanks to its wide bandgap, excellent crystalline quality as well as intrinsic quadratic and cubic susceptibilities, AlN-on-sapphire platform should be appealing for integrated nonlinear optics from MIR to UV region.
Hexagonal boron nitride (hBN) is a wide bandgap van der Waals material that is emerging as a powerful platform for quantum optics and nanophotonics. In this work, we demonstrate whispering gallery mode silica microresonators hybridized with thin layers of epitaxially grown hBN that exhibit high optical quality factor $> 7 times 10^5$. Measurements of the effect of hBN thickness on optical $Q$ and comparison with a theoretical model allows the linear optical absorption coefficient of the hBN films to be estimated. These high-$Q$ devices will be useful for applications in quantum and nonlinear optics, and their hybridized geometry provides a sensitive platform for evaluating losses in hBN and other 2D materials.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا