Do you want to publish a course? Click here

Ergodic-localized junctions in periodically-driven systems

161   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter, we investigate the situation where one couples two domains of a periodically-driven spin chain where one of them is ergodic while the other is fully localized. By combining tools of both graph and Floquet theory, we show that the localized domain remains stable for strong disorder, but as this disorder decreases the localized domain becomes ergodic.



rate research

Read More

We report the analogue simulation of an ergodiclocalized junction by using an array of 12 coupled superconducting qubits. To perform the simulation, we fabricated a superconducting quantum processor that is divided into two domains: a driven domain representing an ergodic system, while the second is localized under the effect of disorder. Due to the overlap between localized and delocalized states, for small disorder there is a proximity effect and localization is destroyed. To experimentally investigate this, we prepare a microwave excitation in the driven domain and explore how deep it can penetrate the disordered region by probing its dynamics. Furthermore, we performed an ensemble average over 50 realizations of disorder, which clearly shows the proximity effect. Our work opens a new avenue to build quantum simulators of driven-disordered systems with applications in condensed matter physics and material science
The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.
This paper presents an analytical study of the coexistence of different transport regimes in quasi-one-dimensional surface-disordered waveguides (or electron conductors). To elucidate main features of surface scattering, the case of two open modes (channels) is considered in great detail. Main attention is paid to the transmission in dependence on various parameters of the model with two types of rough-surface profiles (symmetric and antisymmetric). It is shown that depending on the symmetry, basic mechanisms of scattering can be either enhanced or suppressed. As a consequence, different transport regimes can be realized. Specifically, in the waveguide with symmetric rough boundaries, there are ballistic, localized and coexistence transport regimes. In the waveguide with antisymmetric roughness of lateral walls, another regime of the diffusive transport can arise. Our study allows to reveal the role of the so-called square-gradient scattering which is typically neglected in literature, however, can give a strong impact to the transmission.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel quantum simulation platform based on individually controllable $^{13}$C nuclear spins in diamond. We demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and establish a programmable quantum simulator based on solid-state spins for exploring many-body physics.
Quantum metrology makes use of coherent superpositions to detect weak signals. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions between them. Using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology. It is based on a new method of robust quantum control, which allows us to simultaneously eliminate the undesired effects associated with spin-spin interactions, disorder and control imperfections, enabling a five-fold enhancement in coherence time compared to conventional control sequences. Combined with optimal initialization and readout protocols, this allows us to break the limit for AC magnetic field sensing imposed by interactions, opening a promising avenue for the development of solid-state ensemble magnetometers with unprecedented sensitivity.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا