Do you want to publish a course? Click here

Quantum Metrology with Strongly Interacting Spin Systems

339   0   0.0 ( 0 )
 Added by Hengyun Zhou
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Quantum metrology makes use of coherent superpositions to detect weak signals. While in principle the sensitivity can be improved by increasing the density of sensing particles, in practice this improvement is severely hindered by interactions between them. Using a dense ensemble of interacting electronic spins in diamond, we demonstrate a novel approach to quantum metrology. It is based on a new method of robust quantum control, which allows us to simultaneously eliminate the undesired effects associated with spin-spin interactions, disorder and control imperfections, enabling a five-fold enhancement in coherence time compared to conventional control sequences. Combined with optimal initialization and readout protocols, this allows us to break the limit for AC magnetic field sensing imposed by interactions, opening a promising avenue for the development of solid-state ensemble magnetometers with unprecedented sensitivity.



rate research

Read More

Conventional wisdom holds that macroscopic classical phenomena naturally emerge from microscopic quantum laws. However, despite this mantra, building direct connections between these two descriptions has remained an enduring scientific challenge. In particular, it is difficult to quantitatively predict the emergent classical properties of a system (e.g. diffusivity, viscosity, compressibility) from a generic microscopic quantum Hamiltonian. Here, we introduce a hybrid solid-state spin platform, where the underlying disordered, dipolar quantum Hamiltonian gives rise to the emergence of unconventional spin diffusion at nanometer length scales. In particular, the combination of positional disorder and on-site random fields leads to diffusive dynamics that are Fickian yet non-Gaussian. Finally, by tuning the underlying parameters within the spin Hamiltonian via a combination of static and driven fields, we demonstrate direct control over the emergent spin diffusion coefficient. Our work opens the door to investigating hydrodynamics in many-body quantum spin systems.
We study the depolarization dynamics of a dense ensemble of dipolar interacting spins, associated with nitrogen-vacancy centers in diamond. We observe anomalously fast, density-dependent, and non-exponential spin relaxation. To explain these observations, we propose a microscopic model where an interplay of long-range interactions, disorder, and dissipation leads to predictions that are in quantitative agreement with both current and prior experimental results. Our results pave the way for controlled many-body experiments with long-lived and strongly interacting ensembles of solid-state spins.
105 - Min Jiang , Yunlan Ji , Qing Li 2021
Interacting quantum systems are attracting increasing interest for developing precise metrology. In particular, the realisation that quantum-correlated states and the dynamics of interacting systems can lead to entirely new and unexpected phenomena have initiated an intense research effort to explore interaction-based metrology both theoretically and experimentally. However, the current framework of interaction-based metrology mainly focuses on single-parameter estimations, a demonstration of multiparameter metrology using interactions as a resource was heretofore lacking. Here we demonstrate an interaction-based multiparameter metrology with strongly interacting nuclear spins. We show that the interacting spins become intrinsically sensitive to all components of a multidimensional field when their interactions are significantly larger than their Larmor frequencies. Using liquid-state molecules containing strongly interacting nuclear spins, we demonstrate the proof-of-principle estimation of all three components of an unknown magnetic field and inertial rotation. In contrast to existing approaches, the present interaction-based multiparameter sensing does not require external reference fields and opens a path to develop an entirely new class of multiparameter quantum sensors.
We introduce a new approach for the robust control of quantum dynamics of strongly interacting many-body systems. Our approach involves the design of periodic global control pulse sequences to engineer desired target Hamiltonians that are robust against disorder, unwanted interactions and pulse imperfections. It utilizes a matrix representation of the Hamiltonian engineering protocol based on time-domain transformations of the Pauli spin operator along the quantization axis. This representation allows us to derive a concise set of algebraic conditions on the sequence matrix to engineer robust target Hamiltonians, enabling the simple yet systematic design of pulse sequences. We show that this approach provides an efficient framework to (i) treat any secular many-body Hamiltonian and engineer it into a desired form, (ii) target dominant disorder and interaction characteristics of a given system, (iii) achieve robustness against imperfections, (iv) provide optimal sequence length within given constraints, and (v) substantially accelerate numerical searches of pulse sequences. Using this systematic approach, we develop novel sets of pulse sequences for the protection of quantum coherence, optimal quantum sensing and quantum simulation. Finally, we experimentally demonstrate the robust operation of these sequences in a system with the most general interaction form.
We investigate thermalization dynamics of a driven dipolar many-body quantum system through the stability of discrete time crystalline order. Using periodic driving of electronic spin impurities in diamond, we realize different types of interactions between spins and demonstrate experimentally that the interplay of disorder, driving and interactions leads to several qualitatively distinct regimes of thermalization. For short driving periods, the observed dynamics are well described by an effective Hamiltonian which sensitively depends on interaction details. For long driving periods, the system becomes susceptible to energy exchange with the driving field and eventually enters a universal thermalizing regime, where the dynamics can be described by interaction-induced dephasing of individual spins. Our analysis reveals important differences between thermalization of long-range Ising and other dipolar spin models.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا