Do you want to publish a course? Click here

Entanglement Properties of Localized States in 1D Topological Quantum Walks

158   0   0.0 ( 0 )
 Added by C. M. Chandrashekar
 Publication date 2015
  fields Physics
and research's language is English




Ask ChatGPT about the research

The symmetries associated with discrete-time quantum walks (DTQWs) and the flexibilities in controlling their dynamical parameters allow to create a large number of topological phases. An interface in position space, which separates two regions with different topological numbers, can, for example, be effectively modelled using different coin parameters for the walk on either side of the interface. Depending on the neighbouring numbers, this can lead to localized states in one-dimensional configurations and here we carry out a detailed study into the strength of such localized states. We show that it can be related to the amount of entanglement created by the walks, with minima appearing for strong localizations. This feature also persists in the presence of small amounts of $sigma_x$ (bit flip) noise.



rate research

Read More

We study the surface of a three-dimensional spin chiral $mathrm{Z}_2$ topological insulator (class CII), demonstrating the possibility of its localization. This arises through an interplay of interaction and statistically-symmetric disorder, that confines the gapless fermionic degrees of freedom to a network of one-dimensional helical domain-walls that can be localized. We identify two distinct regimes of this gapless insulating phase, a `clogged regime wherein the network localization is induced by its junctions between otherwise metallic helical domain-walls, and a `fully localized regime of localized domain-walls. The experimental signatures of these regimes are also discussed.
Quantum phases of matter have many relevant applications in quantum computation and quantum information processing. Current experimental feasibilities in diverse platforms allow us to couple two or more subsystems in different phases. In this letter, we investigate the situation where one couples two domains of a periodically-driven spin chain where one of them is ergodic while the other is fully localized. By combining tools of both graph and Floquet theory, we show that the localized domain remains stable for strong disorder, but as this disorder decreases the localized domain becomes ergodic.
The discrete time crystal (DTC) is a recently discovered phase of matter that spontaneously breaks time-translation symmetry. Disorder-induced many-body-localization is required to stabilize a DTC to arbitrary times, yet an experimental investigation of this localized regime has proven elusive. Here, we observe the hallmark signatures of a many-body-localized DTC using a novel quantum simulation platform based on individually controllable $^{13}$C nuclear spins in diamond. We demonstrate the characteristic long-lived spatiotemporal order and confirm that it is robust for generic initial states. Our results are consistent with the realization of an out-of-equilibrium Floquet phase of matter and establish a programmable quantum simulator based on solid-state spins for exploring many-body physics.
We demonstrate that the one-dimensional helical Majorana edges of two-dimensional time-reversal symmetric topological superconductors (class DIII) can become gapless and insulating by a combination of random edge velocity and interaction. Such a gapless insulating edge breaks time-reversal symmetry inhomogeneously, and the local symmetry broken regions can be regarded as static mass potentials or dynamical Ising spins. In both limits, we find that such glassy Majorana edges are generically exponentially localized and trap Majorana zero modes. Interestingly, for a statistically time-reversal symmetric edge, the low-energy theory can be mapped to a Dyson model at zero energy, manifesting a diverging density of states and exhibiting marginal localization (i.e., a diverging localization length). Although the ballistic edge state transport is absent, the localized Majorana zero modes reflect the nontrivial topology in the bulk. Experimental signatures are also discussed.
257 - C. M. Chandrashekar 2012
The time evolution of one- and two-dimensional discrete-time quantum walk with increase in disorder is studied. We use spatial, temporal and spatio-temporal broken periodicity of the unitary evolution as disorder to mimic the effect of disordered/random medium in our study. Disorder induces a dramatic change in the interference pattern leading to localization of the quantum walks in one- and two-dimensions. Spatial disorder results in the decreases of the particle and position entanglement in one-dimension and counter intuitively, an enhancement in entanglement with temporal and spatio-temporal disorder is seen. The study signifies that the Anderson localization of quantum state without compromising on the degree of entanglement could be implement in a large variety of physical settings where quantum walks has been realized. The study presented here could make it feasible to explore, theoretically and experimentally the interplay between disorder and entanglement. This also brings up a variety of intriguing questions relating to the negative and positive implications on algorithmic and other applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا