Do you want to publish a course? Click here

Complexity Results for Preference Aggregation over (m)CP-nets: Pareto and Majority Voting

75   0   0.0 ( 0 )
 Added by Enrico Malizia
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Combinatorial preference aggregation has many applications in AI. Given the exponential nature of these preferences, compact representations are needed and ($m$)CP-nets are among the most studied ones. Sequential and global voting are two ways to aggregate preferences over CP-nets. In the former, preferences are aggregated feature-by-feature. Hence, when preferences have specific feature dependencies, sequential voting may exhibit voting paradoxes, i.e., it might select sub-optimal outcomes. To avoid paradoxes in sequential voting, one has often assumed the $mathcal{O}$-legality restriction, which imposes a shared topological order among all the CP-nets. On the contrary, in global voting, CP-nets are considered as a whole during preference aggregation. For this reason, global voting is immune from paradoxes, and there is no need to impose restrictions over the CP-nets topological structure. Sequential voting over $mathcal{O}$-legal CP-nets has extensively been investigated. On the other hand, global voting over non-$mathcal{O}$-legal CP-nets has not carefully been analyzed, despite it was stated in the literature that a theoretical comparison between global and sequential voting was promising and a precise complexity analysis for global voting has been asked for multiple times. In quite few works, very partial results on the complexity of global voting over CP-nets have been given. We start to fill this gap by carrying out a thorough complexity analysis of Pareto and majority global voting over not necessarily $mathcal{O}$-legal acyclic binary polynomially connected (m)CP-nets. We settle these problems in the polynomial hierarchy, and some of them in PTIME or LOGSPACE, whereas EXPTIME was the previously known upper bound for most of them. We show various tight lower bounds and matching upper bounds for problems that up to date did not have any explicit non-obvious lower bound.



rate research

Read More

The notion of optimality naturally arises in many areas of applied mathematics and computer science concerned with decision making. Here we consider this notion in the context of three formalisms used for different purposes in reasoning about multi-agent systems: strategic games, CP-nets, and soft constraints. To relate the notions of optimality in these formalisms we introduce a natural qualitative modification of the notion of a strategic game. We show then that the optimal outcomes of a CP-net are exactly the Nash equilibria of such games. This allows us to use the techniques of game theory to search for optimal outcomes of CP-nets and vice-versa, to use techniques developed for CP-nets to search for Nash equilibria of the considered games. Then, we relate the notion of optimality used in the area of soft constraints to that used in a generalization of strategic games, called graphical games. In particular we prove that for a natural class of soft constraints that includes weighted constraints every optimal solution is both a Nash equilibrium and Pareto efficient joint strategy. For a natural mapping in the other direction we show that Pareto efficient joint strategies coincide with the optimal solutions of soft constraints.
The Chamberlin-Courant and Monroe rules are fundamental and well-studied rules in the literature of multi-winner elections. The problem of determining if there exists a committee of size k that has a Chamberlin-Courant (respectively, Monroe) score of at most r is known to be NP-complete. We consider the following natural problems in this setting: a) given a committee S of size k as input, is it an optimal k-sized committee, and b) given a candidate c and a committee size k, does there exist an optimal k-sized committee that contains c? In this work, we resolve the complexity of both problems for the Chamberlin-Courant and Monroe voting rules in the settings of rankings as well as approval ballots. We show that verifying if a given committee is optimal is coNP-complete whilst the latter problem is complete for $Theta_{2}^{P}$. We also demonstrate efficient algorithms for the second problem when the input consists of single-peaked rankings. Our contribution fills an essential gap in the literature for these important multi-winner rules.
Learning of user preferences, as represented by, for example, Conditional Preference Networks (CP-nets), has become a core issue in AI research. Recent studies investigate learning of CP-nets from randomly chosen examples or from membership and equivalence queries. To assess the optimality of learning algorithms as well as to better understand the combinatorial structure of classes of CP-nets, it is helpful to calculate certain learning-theoretic information complexity parameters. This article focuses on the frequently studied case of learning from so-called swap examples, which express preferences among objects that differ in only one attribute. It presents bounds on or exact values of some well-studied information complexity parameters, namely the VC dimension, the teaching dimension, and the recursive teaching dimension, for classes of acyclic CP-nets. We further provide algorithms that learn tree-structured and general acyclic CP-nets from membership queries. Using our results on complexity parameters, we assess the optimality of our algorithms as well as that of another query learning algorithm for acyclic CP-nets presented in the literature. Our algorithms are near-optimal, and can, under certain assumptions, be adapted to the case when the membership oracle is faulty.
323 - Andrea Celli , Nicola Gatti 2017
We provide, to the best of our knowledge, the first computational study of extensive-form adversarial team games. These games are sequential, zero-sum games in which a team of players, sharing the same utility function, faces an adversary. We define three different scenarios according to the communication capabilities of the team. In the first, the teammates can communicate and correlate their actions both before and during the play. In the second, they can only communicate before the play. In the third, no communication is possible at all. We define the most suitable solution concepts, and we study the inefficiency caused by partial or null communication, showing that the inefficiency can be arbitrarily large in the size of the game tree. Furthermore, we study the computational complexity of the equilibrium-finding problem in the three scenarios mentioned above, and we provide, for each of the three scenarios, an exact algorithm. Finally, we empirically evaluate the scalability of the algorithms in random games and the inefficiency caused by partial or null communication.
Obtaining high-quality parallel corpora is of paramount importance for training NMT systems. However, as many language pairs lack adequate gold-standard training data, a popular approach has been to mine so-called pseudo-parallel sentences from paired documents in two languages. In this paper, we outline some problems with current methods, propose computationally economical solutions to those problems, and demonstrate success with novel methods on the Tatoeba similarity search benchmark and on a downstream task, namely NMT. We uncover the effect of resource-related factors (i.e. how much monolingual/bilingual data is available for a given language) on the optimal choice of bitext mining approach, and echo problems with the oft-used BUCC dataset that have been observed by others. We make the code and data used for our experiments publicly available.

suggested questions

comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا