Do you want to publish a course? Click here

Majority Voting with Bidirectional Pre-translation For Bitext Retrieval

230   0   0.0 ( 0 )
 Added by Alexander Jones
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

Obtaining high-quality parallel corpora is of paramount importance for training NMT systems. However, as many language pairs lack adequate gold-standard training data, a popular approach has been to mine so-called pseudo-parallel sentences from paired documents in two languages. In this paper, we outline some problems with current methods, propose computationally economical solutions to those problems, and demonstrate success with novel methods on the Tatoeba similarity search benchmark and on a downstream task, namely NMT. We uncover the effect of resource-related factors (i.e. how much monolingual/bilingual data is available for a given language) on the optimal choice of bitext mining approach, and echo problems with the oft-used BUCC dataset that have been observed by others. We make the code and data used for our experiments publicly available.

rate research

Read More

System combination is an important technique for combining the hypotheses of different machine translation systems to improve translation performance. Although early statistical approaches to system combination have been proven effective in analyzing the consensus between hypotheses, they suffer from the error propagation problem due to the use of pipelines. While this problem has been alleviated by end-to-end training of multi-source sequence-to-sequence models recently, these neural models do not explicitly analyze the relations between hypotheses and fail to capture their agreement because the attention to a word in a hypothesis is calculated independently, ignoring the fact that the word might occur in multiple hypotheses. In this work, we propose an approach to modeling voting for system combination in machine translation. The basic idea is to enable words in hypotheses from different systems to vote on words that are representative and should get involved in the generation process. This can be done by quantifying the influence of each voter and its preference for each candidate. Our approach combines the advantages of statistical and neural methods since it can not only analyze the relations between hypotheses but also allow for end-to-end training. Experiments show that our approach is capable of better taking advantage of the consensus between hypotheses and achieves significant improvements over state-of-the-art baselines on Chinese-English and English-German machine translation tasks.
137 - Xu Tan , Yingce Xia , Lijun Wu 2019
The encoder-decoder based neural machine translation usually generates a target sequence token by token from left to right. Due to error propagation, the tokens in the right side of the generated sequence are usually of poorer quality than those in the left side. In this paper, we propose an efficient method to generate a sequence in both left-to-right and right-to-left manners using a single encoder and decoder, combining the advantages of both generation directions. Experiments on three translation tasks show that our method achieves significant improvements over conventional unidirectional approach. Compared with ensemble methods that train and combine two models with different generation directions, our method saves 50% model parameters and about 40% training time, and also improve inference speed.
We investigate the problem of simultaneous machine translation of long-form speech content. We target a continuous speech-to-text scenario, generating translated captions for a live audio feed, such as a lecture or play-by-play commentary. As this scenario allows for revisions to our incremental translations, we adopt a re-translation approach to simultaneous translation, where the source is repeatedly translated from scratch as it grows. This approach naturally exhibits very low latency and high final quality, but at the cost of incremental instability as the output is continuously refined. We experiment with a pipeline of industry-grade speech recognition and translation tools, augmented with simple inference heuristics to improve stability. We use TED Talks as a source of multilingual test data, developing our techniques on English-to-German spoken language translation. Our minimalist approach to simultaneous translation allows us to easily scale our final evaluation to six more target languages, dramatically improving incremental stability for all of them.
The data scarcity in low-resource languages has become a bottleneck to building robust neural machine translation systems. Fine-tuning a multilingual pre-trained model (e.g., mBART (Liu et al., 2020)) on the translation task is a good approach for low-resource languages; however, its performance will be greatly limited when there are unseen languages in the translation pairs. In this paper, we present a continual pre-training (CPT) framework on mBART to effectively adapt it to unseen languages. We first construct noisy mixed-language text from the monolingual corpus of the target language in the translation pair to cover both the source and target languages, and then, we continue pre-training mBART to reconstruct the original monolingual text. Results show that our method can consistently improve the fine-tuning performance upon the mBART baseline, as well as other strong baselines, across all tested low-resource translation pairs containing unseen languages. Furthermore, our approach also boosts the performance on translation pairs where both languages are seen in the original mBARTs pre-training. The code is available at https://github.com/zliucr/cpt-nmt.
While recent research on natural language inference has considerably benefited from large annotated datasets, the amount of inference-related knowledge (including commonsense) provided in the annotated data is still rather limited. There have been two lines of approaches that can be used to further address the limitation: (1) unsupervised pretraining can leverage knowledge in much larger unstructured text data; (2) structured (often human-curated) knowledge has started to be considered in neural-network-based models for NLI. An immediate question is whether these two approaches complement each other, or how to develop models that can bring together their advantages. In this paper, we propose models that leverage structured knowledge in different components of pre-trained models. Our results show that the proposed models perform better than previous BERT-based state-of-the-art models. Although our models are proposed for NLI, they can be easily extended to other sentence or sentence-pair classification problems.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا