Do you want to publish a course? Click here

An Ensemble of Transfer, Semi-supervised and Supervised Learning Methods for Pathological Heart Sound Classification

578   0   0.0 ( 0 )
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

In this work, we propose an ensemble of classifiers to distinguish between various degrees of abnormalities of the heart using Phonocardiogram (PCG) signals acquired using digital stethoscopes in a clinical setting, for the INTERSPEECH 2018 Computational Paralinguistics (ComParE) Heart Beats SubChallenge. Our primary classification framework constitutes a convolutional neural network with 1D-CNN time-convolution (tConv) layers, which uses features transferred from a model trained on the 2016 Physionet Heart Sound Database. We also employ a Representation Learning (RL) approach to generate features in an unsupervised manner using Deep Recurrent Autoencoders and use Support Vector Machine (SVM) and Linear Discriminant Analysis (LDA) classifiers. Finally, we utilize an SVM classifier on a high-dimensional segment-level feature extracted using various functionals on short-term acoustic features, i.e., Low-Level Descriptors (LLD). An ensemble of the three different approaches provides a relative improvement of 11.13% compared to our best single sub-system in terms of the Unweighted Average Recall (UAR) performance metric on the evaluation dataset.

rate research

Read More

Automated heart sounds classification is a much-required diagnostic tool in the view of increasing incidences of heart related diseases worldwide. In this study, we conduct a comprehensive study of heart sounds classification by using various supervised, semi-supervised and unsupervised approaches on the PhysioNet/CinC 2016 Challenge dataset. Supervised approaches, including deep learning and machine learning methods, require large amounts of labelled data to train the models, which are challenging to obtain in most practical scenarios. In view of the need to reduce the labelling burden for clinical practices, where human labelling is both expensive and time-consuming, semi-supervised or even unsupervised approaches in restricted data setting are desirable. A GAN based semi-supervised method is therefore proposed, which allows the usage of unlabelled data samples to boost the learning of data distribution. It achieves a better performance in terms of AUROC over the supervised baseline when limited data samples exist. Furthermore, several unsupervised methods are explored as an alternative approach by considering the given problem as an anomaly detection scenario. In particular, the unsupervised feature extraction using 1D CNN Autoencoder coupled with one-class SVM obtains good performance without any data labelling. The potential of the proposed semi-supervised and unsupervised methods may lead to a workflow tool in the future for the creation of higher quality datasets.
In this paper, we present a method called HODGEPODGEfootnotemark[1] for large-scale detection of sound events using weakly labeled, synthetic, and unlabeled data proposed in the Detection and Classification of Acoustic Scenes and Events (DCASE) 2019 challenge Task 4: Sound event detection in domestic environments. To perform this task, we adopted the convolutional recurrent neural networks (CRNN) as our backbone network. In order to deal with a small amount of tagged data and a large amounts of unlabeled in-domain data, we aim to focus primarily on how to apply semi-supervise learning methods efficiently to make full use of limited data. Three semi-supervised learning principles have been used in our system, including: 1) Consistency regularization applies data augmentation; 2) MixUp regularizer requiring that the predictions for a interpolation of two inputs is close to the interpolation of the prediction for each individual input; 3) MixUp regularization applies to interpolation between data augmentations. We also tried an ensemble of various models, which are trained by using different semi-supervised learning principles. Our proposed approach significantly improved the performance of the baseline, achieving the event-based f-measure of 42.0% compared to 25.8% event-based f-measure of the baseline in the provided official evaluation dataset. Our submissions ranked third among 18 teams in the task 4.
While recent studies on semi-supervised learning have shown remarkable progress in leveraging both labeled and unlabeled data, most of them presume a basic setting of the model is randomly initialized. In this work, we consider semi-supervised learning and transfer learning jointly, leading to a more practical and competitive paradigm that can utilize both powerful pre-trained models from source domain as well as labeled/unlabeled data in the target domain. To better exploit the value of both pre-trained weights and unlabeled target examples, we introduce adaptive consistency regularization that consists of two complementary components: Adaptive Knowledge Consistency (AKC) on the examples between the source and target model, and Adaptive Representation Consistency (ARC) on the target model between labeled and unlabeled examples. Examples involved in the consistency regularization are adaptively selected according to their potential contributions to the target task. We conduct extensive experiments on popular benchmarks including CIFAR-10, CUB-200, and MURA, by fine-tuning the ImageNet pre-trained ResNet-50 model. Results show that our proposed adaptive consistency regularization outperforms state-of-the-art semi-supervised learning techniques such as Pseudo Label, Mean Teacher, and FixMatch. Moreover, our algorithm is orthogonal to existing methods and thus able to gain additional improvements on top of MixMatch and FixMatch. Our code is available at https://github.com/SHI-Labs/Semi-Supervised-Transfer-Learning.
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesnt have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly $c$ connected components if there are $c$ clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods.
We consider the task of learning a classifier from the feature space $mathcal{X}$ to the set of classes $mathcal{Y} = {0, 1}$, when the features can be partitioned into class-conditionally independent feature sets $mathcal{X}_1$ and $mathcal{X}_2$. We show the surprising fact that the class-conditional independence can be used to represent the original learning task in terms of 1) learning a classifier from $mathcal{X}_2$ to $mathcal{X}_1$ and 2) learning the class-conditional distribution of the feature set $mathcal{X}_1$. This fact can be exploited for semi-supervised learning because the former task can be accomplished purely from unlabeled samples. We present experimental evaluation of the idea in two real world applications.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا