Do you want to publish a course? Click here

Surrogate Learning - An Approach for Semi-Supervised Classification

269   0   0.0 ( 0 )
 Publication date 2008
and research's language is English




Ask ChatGPT about the research

We consider the task of learning a classifier from the feature space $mathcal{X}$ to the set of classes $mathcal{Y} = {0, 1}$, when the features can be partitioned into class-conditionally independent feature sets $mathcal{X}_1$ and $mathcal{X}_2$. We show the surprising fact that the class-conditional independence can be used to represent the original learning task in terms of 1) learning a classifier from $mathcal{X}_2$ to $mathcal{X}_1$ and 2) learning the class-conditional distribution of the feature set $mathcal{X}_1$. This fact can be exploited for semi-supervised learning because the former task can be accomplished purely from unlabeled samples. We present experimental evaluation of the idea in two real world applications.



rate research

Read More

In few-shot classification, we are interested in learning algorithms that train a classifier from only a handful of labeled examples. Recent progress in few-shot classification has featured meta-learning, in which a parameterized model for a learning algorithm is defined and trained on episodes representing different classification problems, each with a small labeled training set and its corresponding test set. In this work, we advance this few-shot classification paradigm towards a scenario where unlabeled examples are also available within each episode. We consider two situations: one where all unlabeled examples are assumed to belong to the same set of classes as the labeled examples of the episode, as well as the more challenging situation where examples from other distractor classes are also provided. To address this paradigm, we propose novel extensions of Prototypical Networks (Snell et al., 2017) that are augmented with the ability to use unlabeled examples when producing prototypes. These models are trained in an end-to-end way on episodes, to learn to leverage the unlabeled examples successfully. We evaluate these methods
While Semi-supervised learning has gained much attention in computer vision on image data, yet limited research exists on its applicability in the time series domain. In this work, we investigate the transferability of state-of-the-art deep semi-supervised models from image to time series classification. We discuss the necessary model adaptations, in particular an appropriate model backbone architecture and the use of tailored data augmentation strategies. Based on these adaptations, we explore the potential of deep semi-supervised learning in the context of time series classification by evaluating our methods on large public time series classification problems with varying amounts of labelled samples. We perform extensive comparisons under a decidedly realistic and appropriate evaluation scheme with a unified reimplementation of all algorithms considered, which is yet lacking in the field. We find that these transferred semi-supervised models show significant performance gains over strong supervised, semi-supervised and self-supervised alternatives, especially for scenarios with very few labelled samples.
Most recent neural semi-supervised learning algorithms rely on adding small perturbation to either the input vectors or their representations. These methods have been successful on computer vision tasks as the images form a continuous manifold, but are not appropriate for discrete input such as sentence. To adapt these methods to text input, we propose to decompose a neural network $M$ into two components $F$ and $U$ so that $M = Ucirc F$. The layers in $F$ are then frozen and only the layers in $U$ will be updated during most time of the training. In this way, $F$ serves as a feature extractor that maps the input to high-level representation and adds systematical noise using dropout. We can then train $U$ using any state-of-the-art SSL algorithms such as $Pi$-model, temporal ensembling, mean teacher, etc. Furthermore, this gradually unfreezing schedule also prevents a pretrained model from catastrophic forgetting. The experimental results demonstrate that our approach provides improvements when compared to state of the art methods especially on short texts.
Graphs have become increasingly popular in modeling structures and interactions in a wide variety of problems during the last decade. Graph-based clustering and semi-supervised classification techniques have shown impressive performance. This paper proposes a graph learning framework to preserve both the local and global structure of data. Specifically, our method uses the self-expressiveness of samples to capture the global structure and adaptive neighbor approach to respect the local structure. Furthermore, most existing graph-based methods conduct clustering and semi-supervised classification on the graph learned from the original data matrix, which doesnt have explicit cluster structure, thus they might not achieve the optimal performance. By considering rank constraint, the achieved graph will have exactly $c$ connected components if there are $c$ clusters or classes. As a byproduct of this, graph learning and label inference are jointly and iteratively implemented in a principled way. Theoretically, we show that our model is equivalent to a combination of kernel k-means and k-means methods under certain condition. Extensive experiments on clustering and semi-supervised classification demonstrate that the proposed method outperforms other state-of-the-art methods.
188 - Yao Peng , Meirong He , Yu Wang 2021
Network traffic classification, a task to classify network traffic and identify its type, is the most fundamental step to improve network services and manage modern networks. Classical machine learning and deep learning method have developed well in the field of network traffic classification. However, there are still two major challenges. One is how to protect the privacy of users traffic data, and the other is that it is difficult to obtain labeled data in reality. In this paper, we propose a novel approach using federated semi-supervised learning for network traffic classification. In our approach, the federated servers and several clients work together to train a global classification model. Among them, unlabeled data is used on the client, and labeled data is used on the server. Moreover, we use two traffic subflow sampling methods: simple sampling and incremental sampling for data preprocessing. The experimental results in the QUIC dataset show that the accuracy of our federated semi-supervised approach can reach 91.08% and 97.81% when using the simple sampling method and incremental sampling method respectively. The experimental results also show that the accuracy gap between our method and the centralized training method is minimal, and it can effectively protect users privacy and does not require a large amount of labeled data.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا