Do you want to publish a course? Click here

Tunable Dirac interface states in topological superlattices

105   0   0.0 ( 0 )
 Added by Badih Assaf
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Relativistic Dirac fermions are ubiquitous in condensed matter physics. Their mass is proportional to the material energy gap and the ability to control and tune the mass has become an essential tool to engineer quantum phenomena that mimic high energy particles and provide novel device functionalities. In topological insulator thin films, new states of matter can be generated by hybridizing the massless Dirac states that occur at material surfaces. In this work, we experimentally and theoretically introduce a platform where this hybridization can be continuously tuned: the Pb1-xSnxSe topological superlattice. In this system, topological Dirac states occur at the interfaces between a topological crystalline insulator Pb1-xSnxSe and a trivial insulator, realized in the form of topological quantum wells (TQW) epitaxially stacked on top of each other. Using magnetooptical transmission spectroscopy on high quality MBE grown Pb1-xSnxSe superlattices, we show that the penetration depth of the TQW interface states and therefore their Dirac mass is continuously tunable with temperature. This presents a new pathway to engineer the Dirac mass of topological systems and paves the way towards the realization of emergent quantum states of matter using Pb1-xSnxSe topological superlattices.



rate research

Read More

The non-trivial topology of the three-dimensional (3D) topological insulator (TI) dictates the appearance of gapless Dirac surface states. Intriguingly, when a 3D TI is made into a nanowire, a gap opens at the Dirac point due to the quantum confinement, leading to a peculiar Dirac sub-band structure. This gap is useful for, e.g., future Majorana qubits based on TIs. Furthermore, these Dirac sub-bands can be manipulated by a magnetic flux and are an ideal platform for generating stable Majorana zero modes (MZMs), which play a key role in topological quantum computing. However, direct evidence for the Dirac sub-bands in TI nanowires has not been reported so far. Here we show that by growing very thin ($sim$40-nm diameter) nanowires of the bulk-insulating topological insulator (Bi$_{1-x}$Sb$_x$)$_2$Te$_3$ and by tuning its chemical potential across the Dirac point with gating, one can unambiguously identify the Dirac sub-band structure. Specifically, the resistance measured on gate-tunable four-terminal devices was found to present non-equidistant peaks as a function of the gate voltage, which we theoretically show to be the unique signature of the quantum-confined Dirac surface states. These TI nanowires open the way to address the topological mesoscopic physics, and eventually the Majorana physics when proximitised by an $s$-wave superconductor.
Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic measurement of EuMg2Bi2, a compound with antiferromagnetic transition temperature at 6.7 K, observed via electrical resistivity, magnetization and specific heat capacity measurements. By utilizing angle-resolved photoemission spectroscopy in concurrence with first-principles calculations, we observe Dirac cones at the corner and the zone center of the Brillouin zone. From our experimental data, multiple Dirac states at G and K points are observed, where the Dirac nodes are located at different energy positions from the Fermi level. Our experimental investigations of detailed electronic structure as well as transport measurements of EuMg2Bi2 suggest that it could potentially provide a platform to study the interplay between topology and magnetism.
Confining two dimensional Dirac fermions on the surface of topological insulators has remained an outstanding conceptual challenge. Here we show that Dirac fermion confinement is achievable in topological crystalline insulators (TCI), which host multiple surface Dirac cones depending on the surface termination and the symmetries it preserves. This confinement is most dramatically reflected in the flux dependence of these Dirac states in the nanowire geometry, where different facets connect to form a closed surface. Using SnTe as a case study, we show how wires with all four facets of the <100> type display pronounced and unique Aharonov-Bohm oscillations, while nanowires with the four facets of the <110> type such oscillations are absent due to a strong confinement of the Dirac states to each facet separately. Our results place TCI nanowires as versatile platform for confining and manipulating Dirac surface states.
Three-dimensional topological insulators are characterized by insulating bulk state and metallic surface state involving Dirac fermions that behave as massless relativistic particles. These Dirac fermions are responsible for achieving a number of novel and exotic quantum phenomena in the topological insulators and for their potential applications in spintronics and quantum computations. It is thus essential to understand the electron dynamics of the Dirac fermions, i.e., how they interact with other electrons, phonons and disorders. Here we report super-high resolution angle-resolved photoemission studies on the Dirac fermion dynamics in the prototypical Bi2(Te,Se)3 topological insulators. We have directly revealed signatures of the electron-phonon coupling in these topological insulators and found that the electron-disorder interaction is the dominant factor in the scattering process. The Dirac fermion dynamics in Bi2(Te3-xSex) topological insulators can be tuned by varying the composition, x, or by controlling the charge carriers. Our findings provide crucial information in understanding the electron dynamics of the Dirac fermions in topological insulators and in engineering their surface state for fundamental studies and potential applications.
The topological state that emerges at the surface of a topological insulator (TI) and at the TI-substrate interface are studied in metal-hBN-Bi2Se3 capacitors. By measuring the RF admittance of the capacitors versus gate voltage, we extract the compressibility of the Dirac state located at a gated TI surface. We show that even in the presence of an ungated surface that hosts a trivial electron accumulation layer, the other gated surface always exhibits an ambipolar effect in the quantum capacitance. We succeed in determining the velocity of surface Dirac fermions in two devices, one with a passivated surface and the other with a free surface that hosts trivial states. Our results demonstrate the potential of RF quantum capacitance techniques to probe surface states of systems in the presence of a parasitic density-of-states.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا