Do you want to publish a course? Click here

Observation of multiple Dirac states in a magnetic topological material EuMg2Bi2

147   0   0.0 ( 0 )
 Added by Madhab Neupane
 Publication date 2019
  fields Physics
and research's language is English




Ask ChatGPT about the research

Initiated by the discovery of topological insulators, topologically non-trivial materials, more specifically topological semimetals and metals have emerged as new frontiers in the field of quantum materials. In this work, we perform a systematic measurement of EuMg2Bi2, a compound with antiferromagnetic transition temperature at 6.7 K, observed via electrical resistivity, magnetization and specific heat capacity measurements. By utilizing angle-resolved photoemission spectroscopy in concurrence with first-principles calculations, we observe Dirac cones at the corner and the zone center of the Brillouin zone. From our experimental data, multiple Dirac states at G and K points are observed, where the Dirac nodes are located at different energy positions from the Fermi level. Our experimental investigations of detailed electronic structure as well as transport measurements of EuMg2Bi2 suggest that it could potentially provide a platform to study the interplay between topology and magnetism.



rate research

Read More

The prediction of non-trivial topological electronic states hosted by half-Heusler compounds makes them prime candidates for discovering new physics and devices as they harbor a variety of electronic ground states including superconductivity, magnetism, and heavy fermion behavior. Here we report normal state electronic properties of a superconducting half-Heusler compound YPtBi using angle-resolved photoemission spectroscopy (ARPES). Our data reveal the presence of a Dirac state at the zone center of the Brillouin zone at 500 meV below the chemical potential. We observe the presence of multiple Fermi surface pockets including two concentric hexagonal and six half oval shaped pockets at the gamma and K points of the Brillouin zone, respectively. Furthermore, our measurements show Rashba-split bands and multiple surface states crossing the chemical potential which are supported by the first-principles calculations. Our finding of a Dirac state in YPtBi plays a significant role in establishing half-Heusler compounds as a new potential platform for novel topological phases and explore their connection with superconductivity.
The experimental discovery of the topological Dirac semimetal establishes a platform to search for various exotic quantum phases in real materials. ZrSiS-type materials have recently emerged as topological nodal-line semimetals where gapped Dirac-like surface states are observed. Here, we present a systematic angle-resolved photoemission spectroscopy (ARPES) study of ZrGeTe, a nonsymmorphic symmetry protected Dirac semimetal. We observe two Dirac-like gapless surface states at the same $bar X$ point of the Brillouin zone. Our theoretical analysis and first-principles calculations reveal that these are protected by crystalline symmetry. Hence, ZrGeTe appears as a rare example of a naturally fine tuned system where the interplay between symmorphic and non-symmorphic symmetry leads to rich phenomenology, and thus opens for opportunities to investigate the physics of Dirac semimetallic and topological insulating phases realized in a single material.
Relativistic Dirac fermions are ubiquitous in condensed matter physics. Their mass is proportional to the material energy gap and the ability to control and tune the mass has become an essential tool to engineer quantum phenomena that mimic high energy particles and provide novel device functionalities. In topological insulator thin films, new states of matter can be generated by hybridizing the massless Dirac states that occur at material surfaces. In this work, we experimentally and theoretically introduce a platform where this hybridization can be continuously tuned: the Pb1-xSnxSe topological superlattice. In this system, topological Dirac states occur at the interfaces between a topological crystalline insulator Pb1-xSnxSe and a trivial insulator, realized in the form of topological quantum wells (TQW) epitaxially stacked on top of each other. Using magnetooptical transmission spectroscopy on high quality MBE grown Pb1-xSnxSe superlattices, we show that the penetration depth of the TQW interface states and therefore their Dirac mass is continuously tunable with temperature. This presents a new pathway to engineer the Dirac mass of topological systems and paves the way towards the realization of emergent quantum states of matter using Pb1-xSnxSe topological superlattices.
In the recently discovered topological crystalline insulators (TCIs), topology and crystal symmetry intertwine to create surface states with a unique set of characteristics. Among the theoretical predictions for TCIs is the possibility of imparting mass to the massless Dirac fermions by breaking crystal symmetry, as well as a Lifshitz transition with a change of Fermi surface topology. Here we report high resolution scanning tunneling microscopy studies of a TCI, Pb1-xSnxSe. We demonstrate the formation of zero mass Dirac fermions protected by crystal symmetry and the mechanism of mass generation via symmetry breaking, which constitute the defining characteristics of TCIs. In addition, we show two distinct regimes of fermiology separated by a Van-Hove singularity at the Lifshitz transition point. Our work paves the way for engineering the Dirac band gap and realizing interaction-driven topological quantum phenomena in TCIs.
The helical Dirac fermions on the surface of topological insulators host novel relativistic quantum phenomena in solids. Manipulating spins of topological surface state (TSS) represents an essential step towards exploring the theoretically predicted exotic states related to time reversal symmetry (TRS) breaking via magnetism or magnetic field. Understanding Zeeman effect of TSS and determining its g-factor are pivotal for such manipulations in the latter form of TRS breaking. Here, we report those direct experimental observations in Bi2Se3 and Sb2Te2Se by spectroscopic imaging scanning tunneling microscopy. The Zeeman shifting of zero mode Landau level is identified unambiguously by judiciously excluding the extrinsic influences associated with the non-linearity in the TSS band dispersion and the spatially varying potential. The g-factors of TSS in Bi2Se3 and Sb2Te2Se are determined to be 18 and -6, respectively. This remarkable material dependence opens a new route to control the spins in the TSS.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا