Do you want to publish a course? Click here

Anisotropic light-shift and magic-polarization of the intercombination line of Dysprosium atoms in a far-detuned dipole trap

280   0   0.0 ( 0 )
 Added by Raphael Lopes
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a magic polarization for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $alpha_E^text{s} = 188 (12),alpha_text{0}$ and $alpha_E^text{t} = 34 (12),alpha_text{0}$, respectively, where $alpha_text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polarizability and find qualitative agreement with our observations. Furthermore, we utilize our findings to optimize the efficiency of Doppler cooling of a trapped gas, by controlling the sign and magnitude of the inhomogeneous broadening of the optical transition. The resulting initial gain of the collisional rate allows us, after forced evaporation cooling, to produce a quasi-pure Bose-Einstein condensate of $^{162}$Dy with $3times 10^4$ atoms.



rate research

Read More

322 - T. Maier , H. Kadau , M. Schmitt 2014
We present our technique to create a magneto-optical trap for dysprosium atoms using the narrow-line cooling transition at 626$,$nm to achieve suitable conditions for direct loading into an optical dipole trap. The magneto-optical trap is loaded from an atomic beam via a Zeeman slower using the strongest atomic transition at 421$,$nm. With this combination of two cooling transitions we can trap up to $2.0cdot10^8$ atoms at temperatures down to 6$, mu$K. This cooling approach is simpler than present work with ultracold dysprosium and provides similar starting conditions for a transfer to an optical dipole trap.
84 - A. Trautmann 2018
We report on the first realization of heteronuclear dipolar quantum mixtures of highly magnetic erbium and dysprosium atoms. With a versatile experimental setup, we demonstrate binary Bose-Einstein condensation in five different Er-Dy isotope combinations, as well as one Er-Dy Bose-Fermi mixture. Finally, we present first studies of the interspecies interaction between the two species for one mixture.
Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of next-generation atomic clocks. In this work, we compute dipolar frequency shifts accounting for the intrinsic atomic multilevel structure in standard Ramsey spectroscopy. When interrogating the transitions featuring the smallest Clebsch-Gordan coefficients, we find that a simplified two-level treatment becomes inappropriate, even in the presence of large Zeeman shifts. For these cases, we show a net suppression of dipolar frequency shifts and the emergence of dominant non-classical effects for experimentally relevant parameters. Our findings are pertinent to current generations of optical lattice and optical tweezer clocks, opening a way to further increase their current accuracy, and thus their potential to probe fundamental and many-body physics.
We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, within 3s. The phase-space density at the end of the evaporation reaches unity, close to quantum degeneracy. The gain in phase-space density after evaporation is 10^3. We find that the scaling laws used for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative cooling process. We also compare our results to a simple kinetic model describing the evaporation process and find good agreement with the data.
91 - Taro Mashimo , Masashi Abe , 2019
We report on highly effective trapping of cold atoms by a new method for a stable single optical trap in the near-optical resonant regime. An optical trap with the near-optical resonance condition consists of not only the dipole but also the radiative forces, while a trap using a far-off resonance dominates only the dipole force. We estimate a near-optical resonant trap for ultracold rubidium atoms in the range between -0.373 and -2.23 THz from the resonance. The time dependence of the trapped atoms indicates some difference of the stable center-of-mass positions in the near-optical resonant trap, and also indicates that the differences are caused by the change of the equilibrium condition of the optical dipole and radiative forces. A stable position depends only on laser detuning due to the change in the radiative force; however, the position is ineffective against the change in the laser intensity, which results in a change in the radiative force.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا