Do you want to publish a course? Click here

Dipole-dipole frequency shifts in multilevel atoms

74   0   0.0 ( 0 )
 Added by Andr\\'e Cidrim
 Publication date 2021
  fields Physics
and research's language is English




Ask ChatGPT about the research

Dipole-dipole interactions lead to frequency shifts that are expected to limit the performance of next-generation atomic clocks. In this work, we compute dipolar frequency shifts accounting for the intrinsic atomic multilevel structure in standard Ramsey spectroscopy. When interrogating the transitions featuring the smallest Clebsch-Gordan coefficients, we find that a simplified two-level treatment becomes inappropriate, even in the presence of large Zeeman shifts. For these cases, we show a net suppression of dipolar frequency shifts and the emergence of dominant non-classical effects for experimentally relevant parameters. Our findings are pertinent to current generations of optical lattice and optical tweezer clocks, opening a way to further increase their current accuracy, and thus their potential to probe fundamental and many-body physics.



rate research

Read More

We characterize the anisotropic differential ac-Stark shift for the Dy $626$ nm intercombination transition, induced in a far-detuned $1070$ nm optical dipole trap, and observe the existence of a magic polarization for which the polarizabilities of the ground and excited states are equal. From our measurements we extract both the scalar and tensorial components of the dynamic dipole polarizability for the excited state, $alpha_E^text{s} = 188 (12),alpha_text{0}$ and $alpha_E^text{t} = 34 (12),alpha_text{0}$, respectively, where $alpha_text{0}$ is the atomic unit for the electric polarizability. We also provide a theoretical model allowing us to predict the excited state polarizability and find qualitative agreement with our observations. Furthermore, we utilize our findings to optimize the efficiency of Doppler cooling of a trapped gas, by controlling the sign and magnitude of the inhomogeneous broadening of the optical transition. The resulting initial gain of the collisional rate allows us, after forced evaporation cooling, to produce a quasi-pure Bose-Einstein condensate of $^{162}$Dy with $3times 10^4$ atoms.
A quantum vortex dipole, comprised of a closely bound pair of vortices of equal strength with opposite circulation, is a spatially localized travelling excitation of a planar superfluid that carries linear momentum, suggesting a possible analogy with ray optics. We investigate numerically and analytically the motion of a quantum vortex dipole incident upon a step-change in the background superfluid density of an otherwise uniform two-dimensional Bose-Einstein condensate. Due to the conservation of fluid momentum and energy, the incident and refracted angles of the dipole satisfy a relation analogous to Snells law, when crossing the interface between regions of different density. The predictions of the analogue Snells law relation are confirmed for a wide range of incident angles by systematic numerical simulations of the Gross-Piteavskii equation. Near the critical angle for total internal reflection, we identify a regime of anomalous Snells law behaviour where the finite size of the dipole causes transient capture by the interface. Remarkably, despite the extra complexity of the surface interaction, the incoming and outgoing dipole paths obey Snells law.
91 - Taro Mashimo , Masashi Abe , 2019
We report on highly effective trapping of cold atoms by a new method for a stable single optical trap in the near-optical resonant regime. An optical trap with the near-optical resonance condition consists of not only the dipole but also the radiative forces, while a trap using a far-off resonance dominates only the dipole force. We estimate a near-optical resonant trap for ultracold rubidium atoms in the range between -0.373 and -2.23 THz from the resonance. The time dependence of the trapped atoms indicates some difference of the stable center-of-mass positions in the near-optical resonant trap, and also indicates that the differences are caused by the change of the equilibrium condition of the optical dipole and radiative forces. A stable position depends only on laser detuning due to the change in the radiative force; however, the position is ineffective against the change in the laser intensity, which results in a change in the radiative force.
We create fermionic dipolar $^{23}$Na$^6$Li molecules in their triplet ground state from an ultracold mixture of $^{23}$Na and $^6$Li. Using magneto-association across a narrow Feshbach resonance followed by a two-photon STIRAP transfer to the triplet ground state, we produce $3,{times},10^4$ ground state molecules in a spin-polarized state. We observe a lifetime of $4.6,text{s}$ in an isolated molecular sample, approaching the $p$-wave universal rate limit. Electron spin resonance spectroscopy of the triplet state was used to determine the hyperfine structure of this previously unobserved molecular state.
We demonstrate experimentally the evaporative cooling of a few hundred rubidium 87 atoms in a single-beam microscopic dipole trap. Starting from 800 atoms at a temperature of 125microKelvins, we produce an unpolarized sample of 40 atoms at 110nK, within 3s. The phase-space density at the end of the evaporation reaches unity, close to quantum degeneracy. The gain in phase-space density after evaporation is 10^3. We find that the scaling laws used for much larger numbers of atoms are still valid despite the small number of atoms involved in the evaporative cooling process. We also compare our results to a simple kinetic model describing the evaporation process and find good agreement with the data.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا