We reformulate the problem of bounding the total rank of the homology of perfect chain complexes over the group ring $mathbb{F}_p[G]$ of an elementary abelian $p$-group $G$ in terms of commutative algebra. This extends results of Carlsson for $p=2$ to all primes. As an intermediate step, we construct an embedding of the derived category of perfect chain complexes over $mathbb{F}_p[G]$ into the derived category of $p$-DG modules over a polynomial ring.
This note contains a generalization to $p>2$ of the authors previous calculations of the coefficients of $(mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz allow us to calculate the coefficients of the geometric fixed point spectrum $Phi^{(mathbb{Z}/p)^n}Hmathbb{Z}/p$, and more generally, the $mathbb{Z}$-graded coefficients of the localization of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$ by inverting any chosen set of embeddings $S^0rightarrow S^{alpha_i}$ where $alpha_i$ are non-trivial irreducible representations. We also calculate the $RO(G)^+$-graded coefficients of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$, which means the cohomology of a point indexed by an actual (not virtual) representation. (This is the non-derived part, which has a nice algebraic description.)
The $ER(2)$-cohomology of $Bmathbb{Z}/(2^q)$ and $mathbb{C}P^n$ are computed along with the Atiyah-Hirzebruch spectral sequence for $ER(2)^*(mathbb{C}P^infty)$. This, along with other papers in this series, gives us the $ER(2)$-cohomology of all Eilenberg-MacLane spaces. Since $ER(2)$ is $TMF_0(3)$ after a suitable completion, these computations also take care of that theory.
A projectively normal Calabi-Yau threefold $X subseteq mathbb{P}^n$ has an ideal $I_X$ which is arithmetically Gorenstein, of Castelnuovo-Mumford regularity four. Such ideals have been intensively studied when $I_X$ is a complete intersection, as well as in the case where $X$ is codimension three. In the latter case, the Buchsbaum-Eisenbud theorem shows that $I_X$ is given by the Pfaffians of a skew-symmetric matrix. A number of recent papers study the situation when $I_X$ has codimension four. We prove there are 16 possible betti tables for an arithmetically Gorenstein ideal $I$ with $mathrm{codim}(I)=4=mathrm{reg}(I)$, and that exactly 8 of these occur for smooth irreducible nondegenerate threefolds. We investigate the situation in codimension five or more, obtaining examples of $X$ with $h^{p,q}(X)$ not among those appearing for $I_X$ of lower codimension or as complete intersections in toric Fano varieties. A key tool in our approach is the use of inverse systems to identify possible betti tables for $X$.
Let $V$ be an elementary abelian $2$-group and $X$ be a finite $V$-CW-complex. In this memoir we study two cochain complexes of modules over the mod2 Steenrod algebra $mathrm{A}$, equipped with an action of $mathrm{H}^{*}V$, the mod2 cohomology of $V$, both associated with $X$. The first, which we call the topological complex, is defined using the orbit filtration of $X$. The second, which we call the algebraic complex, is defined just in terms of the unstable $mathrm{A}$-module $mathrm{H}^*_V X$, the mod2 equivariant cohomology of $X$. Our study makes intensive use of the theory of unstable $mathrm{H}^{*}V$-$mathrm{A}$-modules which is a by-product of the researches on Sullivan conjecture. There is a noteworthy overlap between the topological part of our memoir and the paper Syzygies in equivariant cohomology in positive characteristic, by Allday, Franz and Puppe, which has just appeared; however our techniques are quite different from theirs (the name Steenrod does not show up in their article).
We propose a new theory of (non-split) P^n-functors. These are F: A -> B for which the adjunction monad RF is a repeated extension of Id_A by powers of an autoequivalence H and three conditions are satisfied: the monad condition, the adjoints condition, and the highest degree term condition. This unifies and extends the two earlier notions of spherical functors and split P^n-functors. We construct the P-twist of such F and prove it to be an autoequivalence. We then give a criterion for F to be a P^n-functor which is stronger than the definition but much easier to check in practice. It involves only two conditions: the strong monad condition and the weak adjoints condition. For split P^n-functors, we prove Segals conjecture on their relation to spherical functors. Finally, we give four examples of non-split P^n-functors: spherical functors, extensions by zero, cyclic covers, and family P-twists. For the latter, we show the P-twist to be the derived monodromy of associated Mukai flop, the so-called `flop-flop = twist formula.