Do you want to publish a course? Click here

On the Coefficients of $(mathbb{Z}/p)^n$-Equivariant Ordinary Cohomology with Coefficients in $mathbb{Z}/p$

87   0   0.0 ( 0 )
 Added by Igor Kriz
 Publication date 2020
  fields
and research's language is English




Ask ChatGPT about the research

This note contains a generalization to $p>2$ of the authors previous calculations of the coefficients of $(mathbb{Z}/2)^n$-equivariant ordinary cohomology with coefficients in the constant $mathbb{Z}/2$-Mackey functor. The algberaic results by S.Kriz allow us to calculate the coefficients of the geometric fixed point spectrum $Phi^{(mathbb{Z}/p)^n}Hmathbb{Z}/p$, and more generally, the $mathbb{Z}$-graded coefficients of the localization of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$ by inverting any chosen set of embeddings $S^0rightarrow S^{alpha_i}$ where $alpha_i$ are non-trivial irreducible representations. We also calculate the $RO(G)^+$-graded coefficients of $Hmathbb{Z}/p_{(mathbb{Z}/p)^n}$, which means the cohomology of a point indexed by an actual (not virtual) representation. (This is the non-derived part, which has a nice algebraic description.)



rate research

Read More

We reformulate the problem of bounding the total rank of the homology of perfect chain complexes over the group ring $mathbb{F}_p[G]$ of an elementary abelian $p$-group $G$ in terms of commutative algebra. This extends results of Carlsson for $p=2$ to all primes. As an intermediate step, we construct an embedding of the derived category of perfect chain complexes over $mathbb{F}_p[G]$ into the derived category of $p$-DG modules over a polynomial ring.
The $ER(2)$-cohomology of $Bmathbb{Z}/(2^q)$ and $mathbb{C}P^n$ are computed along with the Atiyah-Hirzebruch spectral sequence for $ER(2)^*(mathbb{C}P^infty)$. This, along with other papers in this series, gives us the $ER(2)$-cohomology of all Eilenberg-MacLane spaces. Since $ER(2)$ is $TMF_0(3)$ after a suitable completion, these computations also take care of that theory.
We compute the $GL_{r+1}$-equivariant Chow class of the $GL_{r+1}$-orbit closure of any point $(x_1, ldots, x_n) in (mathbb{P}^r)^n$ in terms of the rank polytope of the matroid represented by $x_1, ldots, x_n in mathbb{P}^r$. Using these classes and generalizations involving point configurations in higher dimensional projective spaces, we define for each $dtimes n$ matrix $M$ an $n$-ary operation $[M]_hbar$ on the small equivariant quantum cohomology ring of $mathbb{P}^r$, which is the $n$-ary quantum product when $M$ is an invertible matrix. We prove that $M mapsto [M]_hbar$ is a valuative matroid polytope association. Like the quantum product, these operations satisfy recursive properties encoding solutions to enumerative problems involving point configurations of given moduli in a relative setting. As an application, we compute the number of line sections with given moduli of a general degree $2r+1$ hypersurface in $mathbb{P}^r$, generalizing the known case of quintic plane curves.
62 - Fei Ren 2021
Let $X$ be a separated scheme of finite type over $k$ with $k$ being a perfect field of positive characteristic $p$. In this work we define a complex $K_{n,X,log}$ via Grothendiecks duality theory of coherent sheaves following Kato and build up a quasi-isomorphism from the Kato-Moser complex of logarithmic de Rham-Witt sheaves $tilde u_{n,X}$ to $K_{n,X,log}$ for the etale topology, and also for the Zariski topology under the extra assumption $k=bar k$. Combined with Zhongs quasi-isomorphism from Blochs cycle complex $mathbb Z^c_{X}$ to $tilde u_{n,X}$, we deduce certain vanishing, etale descent properties as well as invariance under rational resolutions for higher Chow groups of $0$-cycles with $mathbb Z/p^n$-coefficients.
88 - Igor Kriz , Yunze Lu 2020
We completely calculate the $RO(G)$-graded coefficients of ordinary equivariant cohomology where $G$ is the dihedral group of order $2p$ for a prime $p>2$ both with constant and Burnside ring coefficients. The authors first proved it for $p=3$ and then the second author generalized it to arbitrary $p$. These are the first such calculations for a non-abelian group.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا