No Arabic abstract
In this paper, we address the problem of personalized next Point-of-interest (POI) recommendation which has become an important and very challenging task for location-based social networks (LBSNs), but not well studied yet. With the conjecture that, under different contextual scenarios, human exhibits distinct mobility pattern, we attempt here to jointly model the next POI recommendation under the influence of users latent behavior pattern. We propose to adopt a third-rank tensor to model the successive check-in behaviors. By integrating categorical influence into mobility patterns and aggregating users spatial preference on a POI, the proposed model deal with the next new POI recommendation problem by nature. By incorporating softmax function to fuse the personalized Markov chain with latent pattern, we furnish a Bayesian Personalized Ranking (BPR) approach and derive the optimization criterion accordingly. Expectation Maximization (EM) is then used to estimate the model parameters. We further develop a personalized model by taking into account personalized mobility patterns under the contextual scenario to improve the recommendation performance. Extensive experiments on two large-scale LBSNs datasets demonstrate the significant improvements of our model over several state-of-the-art methods.
Personalized Point of Interest recommendation is very helpful for satisfying users needs at new places. In this article, we propose a tag embedding based method for Personalized Recommendation of Point Of Interest. We model the relationship between tags corresponding to Point Of Interest. The model provides representative embedding corresponds to a tag in a way that related tags will be closer. We model Point of Interest-based on tag embedding and also model the users (user profile) based on the Point Of Interest rated by them. finally, we rank the users candidate Point Of Interest based on cosine similarity between users embedding and Point of Interests embedding. Further, we find the parameters required to model user by discrete optimizing over different measures (like ndcg@5, MRR, ...). We also analyze the result while considering the same parameters for all users and individual parameters for each user. Along with it we also analyze the effect on the result while changing the dataset to model the relationship between tags. Our method also minimizes the privacy leak issue. We used TREC Contextual Suggestion 2016 Phase 2 dataset and have significant improvement over all the measures on the state of the art method. It improves ndcg@5 by 12.8%, p@5 by 4.3%, and MRR by 7.8%, which shows the effectiveness of the method.
Point-of-Interest (POI) recommendation is an important task in location-based social networks. It facilitates the relation modeling between users and locations. Recently, researchers recommend POIs by long- and short-term interests and achieve success. However, they fail to well capture the periodic interest. People tend to visit similar places at similar times or in similar areas. Existing models try to acquire such kind of periodicity by users mobility status or time slot, which limits the performance of periodic interest. To this end, we propose to learn spatial-temporal periodic interest. Specifically, in the long-term module, we learn the temporal periodic interest of daily granularity, then utilize intra-level attention to form long-term interest. In the short-term module, we construct various short-term sequences to acquire the spatial-temporal periodic interest of hourly, areal, and hourly-areal granularities, respectively. Finally, we apply inter-level attention to automatically integrate multiple interests. Experiments on two real-world datasets demonstrate the state-of-the-art performance of our method.
User interest modeling is critical for personalized news recommendation. Existing news recommendation methods usually learn a single user embedding for each user from their previous behaviors to represent their overall interest. However, user interest is usually diverse and multi-grained, which is difficult to be accurately modeled by a single user embedding. In this paper, we propose a news recommendation method with hierarchical user interest modeling, named HieRec. Instead of a single user embedding, in our method each user is represented in a hierarchical interest tree to better capture their diverse and multi-grained interest in news. We use a three-level hierarchy to represent 1) overall user interest; 2) user interest in coarse-grained topics like sports; and 3) user interest in fine-grained topics like football. Moreover, we propose a hierarchical user interest matching framework to match candidate news with different levels of user interest for more accurate user interest targeting. Extensive experiments on two real-world datasets validate our method can effectively improve the performance of user modeling for personalized news recommendation.
Social learning, i.e., students learning from each other through social interactions, has the potential to significantly scale up instruction in online education. In many cases, such as in massive open online courses (MOOCs), social learning is facilitated through discussion forums hosted by course providers. In this paper, we propose a probabilistic model for the process of learners posting on such forums, using point processes. Different from existing works, our method integrates topic modeling of the post text, timescale modeling of the decay in post activity over time, and learner topic interest modeling into a single model, and infers this information from user data. Our method also varies the excitation levels induced by posts according to the thread structure, to reflect typical notification settings in discussion forums. We experimentally validate the proposed model on three real-world MOOC datasets, with the largest one containing up to 6,000 learners making 40,000 posts in 5,000 threads. Results show that our model excels at thread recommendation, achieving significant improvement over a number of baselines, thus showing promise of being able to direct learners to threads that they are interested in more efficiently. Moreover, we demonstrate analytics that our model parameters can provide, such as the timescales of different topic categories in a course.
Next-basket recommendation (NBR) is prevalent in e-commerce and retail industry. In this scenario, a user purchases a set of items (a basket) at a time. NBR performs sequential modeling and recommendation based on a sequence of baskets. NBR is in general more complex than the widely studied sequential (session-based) recommendation which recommends the next item based on a sequence of items. Recurrent neural network (RNN) has proved to be very effective for sequential modeling and thus been adapted for NBR. However, we argue that existing RNNs cannot directly capture item frequency information in the recommendation scenario. Through careful analysis of real-world datasets, we find that {em personalized item frequency} (PIF) information (which records the number of times that each item is purchased by a user) provides two critical signals for NBR. But, this has been largely ignored by existing methods. Even though existing methods such as RNN based methods have strong representation ability, our empirical results show that they fail to learn and capture PIF. As a result, existing methods cannot fully exploit the critical signals contained in PIF. Given this inherent limitation of RNNs, we propose a simple item frequency based k-nearest neighbors (kNN) method to directly utilize these critical signals. We evaluate our method on four public real-world datasets. Despite its relative simplicity, our method frequently outperforms the state-of-the-art NBR methods -- including deep learning based methods using RNNs -- when patterns associated with PIF play an important role in the data.