Do you want to publish a course? Click here

Proximity effect model for x-ray Transition Edge Sensors

262   0   0.0 ( 0 )
 Added by Rebecca Harwin
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Transition Edge Sensors are ultra-sensitive superconducting detectors with applications in many areas of research, including astrophysics. The device consists of a superconducting thin film, often with additional normal metal features, held close to its transition temperature and connected to two superconducting leads of a higher transition temperature. There is currently no way to reliably assess the performance of a particular device geometry or material composition without making and testing the device. We have developed a proximity effect model based on the Usadel equations to predict the effects of device geometry and material composition on sensor performance. The model is successful in reproducing I-V curves for two devices currently under study. We use the model to suggest the optimal size and geometry for TESs, considering how small the devices can be made before their performance is compromised. In the future, device modelling prior to manufacture will reduce the need for time-consuming and expensive testing.



rate research

Read More

We are developing large TES arrays in combination with FDM readout for the next generation of X-ray space observatories. For operation under AC-bias, the TESs have to be carefully designed and optimized. In particular, the use of high aspect ratio devices will help to mitigate non-ideal behaviour due to the weak-link effect. In this paper, we present a full characterization of a TES array containing five different device geometries, with aspect ratios (width:length) ranging from 1:2 up to 1:6. The complex impedance of all geometries is measured in different bias configurations to study the evolution of the small-signal limit superconducting transition parameters, as well as the excess noise. We show that high aspect ratio devices with properly tuned critical temperatures (around 90 mK) can achieve excellent energy resolution, with an array average of 2.03 +- 0.17 eV at 5.9 keV and a best achieved resolution of 1.63 +- 0.17 eV. This demonstrates that AC-biased TESs can achieve a very competitive performance compared to DC-biased TESs. The results have motivated a push to even more extreme device geometries currently in development.
In this paper we present a new measurement setup, where a transitionedge sensor detector array is used to detect X-rays in particle induced X-ray emission measurements with a 2 MeV proton beam. Transition-edge sensors offer orders of magnitude improvement in energy resolution compared to conventional silicon or germanium detectors, making it possible to recognize spectral lines in materials analysis that have previously been impossible to resolve, and to get chemical information from the elements. Our sensors are cooled to the operation temperature (65 mK) with a cryogen-free adiabatic demagnetization refrigerator, which houses a specially designed X-ray snout that has a vacuum tight window to couple in the radiation. For the best pixel, the measured instrumental energy resolution was 3.06 eV full width at half maximum at 5.9 keV.We discuss the current status of the project, benefits of transition-edge sensors when used in particle induced X-ray emission spectroscopy, and the results from the first measurements.
We have recently shown that normal-metal/superconductor (N/S) bilayer TESs (superconducting Transition-Edge Sensors) exhibit weak-link behavior.1 Here we extend our understanding to include TESs with added noise-mitigating normal-metal structures (N structures). We find TESs with added Au structures also exhibit weak-link behavior as evidenced by exponential temperature dependence of the critical current and Josephson-like oscillations of the critical current with applied magnetic field. We explain our results in terms of an effect converse to the longitudinal proximity effect (LoPE)1, the lateral inverse proximity effect (LaiPE), for which the order parameter in the N/S bilayer is reduced due to the neighboring N structures. Resistance and critical current measurements are presented as a function of temperature and magnetic field taken on square Mo/Au bilayer TESs with lengths ranging from 8 to 130 {mu}m with and without added N structures. We observe the inverse proximity effect on the bilayer over in-plane distances many tens of microns and find the transition shifts to lower temperatures scale approximately as the inverse square of the in- plane N-structure separation distance, without appreciable broadening of the transition width. We also present evidence for nonequilbrium superconductivity and estimate a quasiparticle lifetime of 1.8 times 10-10 s for the bilayer. The LoPE model is also used to explain the increased conductivity at temperatures above the bilayers steep resistive transition.
The Simons Observatory is building both large (6 m) and small (0.5 m) aperture telescopes in the Atacama desert in Chile to observe the cosmic microwave background (CMB) radiation with unprecedented sensitivity. Simons Observatory telescopes in total will use over 60,000 transition edge sensor (TES) detectors spanning center frequencies between 27 and 285 GHz and operating near 100 mK. TES devices have been fabricated for the Simons Observatory by NIST, Berkeley, and HYPRES/SeeQC corporation. Iterations of these devices have been tested cryogenically in order to inform the fabrication of further devices, which will culminate in the final TES designs to be deployed in the field. The detailed design specifications have been independently iterated at each fabrication facility for particular detector frequencies. We present test results for prototype devices, with emphasis on NIST high frequency detectors. A dilution refrigerator was used to achieve the required temperatures. Measurements were made both with 4-lead resistance measurements and with a time domain Superconducting Quantum Interference Device (SQUID) multiplexer system. The SQUID readout measurements include analysis of current vs voltage (IV) curves at various temperatures, square wave bias step measurements, and detector noise measurements. Normal resistance, superconducting critical temperature, saturation power, thermal and natural time constants, and thermal properties of the devices are extracted from these measurements.
With its first flight in 2018, Micro-X became the first program to fly Transition-Edge Sensors and their SQUID readouts in space. The science goal was a high-resolution, spatially resolved X-ray spectrum of the Cassiopeia A Supernova Remnant. While a rocket pointing error led to no time on target, the data was used to demonstrate the flight performance of the instrument. The detectors observed X-rays from the on-board calibration source, but a susceptibility to external magnetic fields limited their livetime. Accounting for this, no change was observed in detector response between ground operation and flight operation. This paper provides an overview of the first flight performance and focuses on the upgrades made in preparation for reflight. The largest changes have been upgrading the SQUIDs to mitigate magnetic susceptibility, synchronizing the clocks on the digital electronics to minimize beat frequencies, and replacing the mounts between the cryostat and the rocket skin to improve mechanical integrity. As the first flight performance was consistent with performance on the ground, reaching the instrument goals in the laboratory is considered a strong predictor of future flight performance.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا