No Arabic abstract
New high-resolution far-infrared (FIR) observations of both ortho- and para-NH3 transitions toward IRC+10216 were obtained with Herschel, with the goal of determining the ammonia abundance and constraining the distribution of NH3 in the envelope of IRC+10216. We used the Heterodyne Instrument for the Far Infrared (HIFI) on board Herschel to observe all rotational transitions up to the J=3 level (three ortho- and six para-NH3 lines). We conducted non-LTE multilevel radiative transfer modelling, including the effects of near-infrared (NIR) radiative pumping through vibrational transitions. We found that NIR pumping is of key importance for understanding the excitation of rotational levels of NH3. The derived NH3 abundances relative to molecular hydrogen were (2.8+-0.5)x10^{-8} for ortho-NH3 and (3.2^{+0.7}_{-0.6})x10^{-8} for para-NH3, consistent with an ortho/para ratio of 1. These values are in a rough agreement with abundances derived from the inversion transitions, as well as with the total abundance of NH3 inferred from the MIR absorption lines. To explain the observed rotational transitions, ammonia must be formed near to the central star at a radius close to the end of the wind acceleration region, but no larger than about 20 stellar radii (1 sigma confidence level).
A single dish monitoring of millimeter maser lines SiS J=14-13 and HCN nu_2 = 1^f J=3-2 and several other rotational lines is reported for the archetypal carbon star IRC+10216. Relative line strength variations of 5%~30% are found for eight molecular line features with respect to selected reference lines. Definite line-shape variation is found in limited velocity intervals of the SiS and HCN line profiles. The asymmetrical line profiles of the two lines are mainly due to the varying components. Their dominant varying components of the line profiles have similar periods and phases as the IR light variation, although both quantities show some degree of velocity dependence; there is also variability asymmetry between the blue and red line wings of both lines. Combining the velocities and amplitudes with a wind velocity model, we suggest that the line profile variations are due to SiS and HCN masing lines emanating from the wind acceleration zone. The possible link of the variabilities to thermal, dynamical and/or chemical processes within or under this region is also discussed.
We present new Herschel/PACS images at 70, 100, and 160 micron of the well-known, nearby, carbon-rich asymptotic giant branch star IRC+10216 revealing multiple dust shells in its circumstellar envelope. For the first time, dust shells (or arcs) are detected until 320 arcsec. The almost spherical shells are non-concentric and have an angular extent between 40 deg and 200 deg. The shells have a typical width of 5 arcsec - 8 arcsec, and the shell separation varies in the range of 10 arcsec - 35 arcsec, corresponding to 500-1700 yr. Local density variations within one arc are visible. The shell/intershell density contrast is typically 4, and the arcs contain some 50% more dust mass than the smooth envelope. The observed (nested) arcs record the mass-loss history over the past 16 000 yr, but Rayleigh-Taylor and Kelvin-Helmholtz instabilities in the turbulent astropause and astrosheath will erase any signature of the mass-loss history for at least the first 200 000 yr of mass loss. Accounting for the bowshock structure, the envelope mass around IRC+10216 contains >2Msun of gas and dust mass. It is argued that the origin of the shells is related to non-isotropic mass-loss events and clumpy dust formation.
We present the detection of C4H2 for first time in the envelope of the C-rich AGB star IRC+10216 based on high spectral resolution mid-IR observations carried out with the Texas Echelon-cross-Echelle Spectrograph (TEXES) mounted on the Infrared Telescope Facility (IRTF). The obtained spectrum contains 24 narrow absorption features above the detection limit identified as lines of the ro-vibrational C4H2 band nu6+nu8(sigma_u^+). The analysis of these lines through a ro-vibrational diagram indicates that the column density of C4H2 is 2.4(1.5)E+16 cm^(-2). Diacetylene is distributed in two excitation populations accounting for 20 and 80% of the total column density and with rotational temperatures of 47(7) and 420(120) K, respectively. This two-folded rotational temperature suggests that the absorbing gas is located beyond ~0.4~20R* from the star with a noticeable cold contribution outwards from ~10~500R*. This outer shell matches up with the place where cyanoacetylenes and carbon chains are known to form due to the action of the Galactic dissociating radiation field on the neutral gas coming from the inner layers of the envelope.
The C-rich AGB star IRC+10216 undergoes strong mass loss, and quasi-periodic density enhancements in the circumstellar matter have been reported. CO is ubiquitous in the CSE, while CCH emission comes from a spatially confined shell. With the IRAM 30m telescope and Herschel/HIFI, we recently detected unexpectedly strong emission from the CCH N=4-3, 6-5, 7-6, 8-7, and 9-8 transitions, challenging the available chemical and physical models. We aim to constrain the physical properties of IRC+10216s CSE, including the effect of episodic mass loss on the observed emission. In particular, we aim to determine the excitation region and conditions of CCH and to reconcile these with interferometric maps of the N=1-0 transition. Via radiative-transfer modelling, we provide a physical description of the CSE, constrained by the SED and a sample of 20 high-resolution and 29 low-resolution CO lines. We further present detailed radiative-transfer analysis of CCH. Assuming a distance of 150pc, the SED is modelled with a stellar luminosity of 11300Lsun and a dust-mass-loss rate of 4.0times10^{-8}Msun/yr. Based on the analysis of 20 high resolution CO observations, an average gas-mass-loss rate for the last 1000yrs of 1.5times10^{-5}Msun/yr is derived. This gives a gas-to-dust-mass ratio of 375, typical for an AGB star. The gas kinetic temperature throughout the CSE is described by 3 powerlaws: it goes as r^{-0.58} for r<9R*, as r^{-0.40} for 9<=r<=65R*, and as r^{-1.20} for r>65R*. This model successfully describes all 49 CO lines. We show the effect of wind-density enhancements on the CCH-abundance profile, and the good agreement of the model with the CCH N=1-0 transition and with the lines observed with the 30m telescope and HIFI. We report on the importance of radiative pumping to the vibrationally excited levels of CCH and the significant effect this has on the excitation of all levels of the CCH-molecule.
Linear carbon chains are common in various types of astronomical molecular sources. Possible formation mechanisms involve both bottom-up and top-down routes. We have carried out a combined observational and modeling study of the formation of carbon chains in the C-star envelope IRC+10216, where the polymerization of acetylene and hydrogen cyanide induced by ultraviolet photons can drive the formation of linear carbon chains of increasing length. We have used ALMA to map the emission of 3 mm rotational lines of the hydrocarbon radicals C2H, C4H, and C6H, and the CN-containing species CN, C3N, HC3N, and HC5N with an angular resolution of 1. The spatial distribution of all these species is a hollow, 5-10 wide, spherical shell located at a radius of 10-20 from the star, with no appreciable emission close to the star. Our observations resolve the broad shell of carbon chains into thinner sub-shells which are 1-2 wide and not fully concentric, indicating that the mass loss process has been discontinuous and not fully isotropic. The radial distributions of the species mapped reveal subtle differences: while the hydrocarbon radicals have very similar radial distributions, the CN-containing species show more diverse distributions, with HC3N appearing earlier in the expansion and the radical CN extending later than the rest of the species. The observed morphology can be rationalized by a chemical model in which the growth of polyynes is mainly produced by rapid gas-phase chemical reactions of C2H and C4H radicals with unsaturated hydrocarbons, while cyanopolyynes are mainly formed from polyynes in gas-phase reactions with CN and C3N radicals.