Do you want to publish a course? Click here

HD 89345: a bright oscillating star hosting a transiting warm Saturn-sized planet observed by K2

251   0   0.0 ( 0 )
 Added by Vincent Van Eylen
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star ($V = 9.3$ mag) observed by the K2 mission with one-minute time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding the mass and radius to be $1.12^{+0.04}_{-0.01}~M_odot$ and $1.657^{+0.020}_{-0.004}~R_odot$, respectively. The star appears to have recently left the main sequence, based on the inferred age, $9.4^{+0.4}_{-1.3}~mathrm{Gyr}$, and the non-detection of mixed modes. The star hosts a warm Saturn ($P = 11.8$~days, $R_p = 6.86 pm 0.14~R_oplus$). Radial-velocity follow-up observations performed with the FIES, HARPS, and HARPS-N spectrographs show that the planet has a mass of $35.7 pm 3.3~M_oplus$. The data also show that the planets orbit is eccentric ($eapprox 0.2$). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to conform to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.



rate research

Read More

We report the detection of V1298 Tau b, a warm Jupiter-sized planet ($R_P$ = 0.91 $pm$ 0.05~ $R_mathrm{Jup}$, $P = 24.1$ days) transiting a young solar analog with an estimated age of 23 million years. The star and its planet belong to Group 29, a young association in the foreground of the Taurus-Auriga star-forming region. While hot Jupiters have been previously reported around young stars, those planets are non-transiting and near-term atmospheric characterization is not feasible. The V1298 Tau system is a compelling target for follow-up study through transmission spectroscopy and Doppler tomography owing to the transit depth (0.5%), host star brightness ($K_s$ = 8.1 mag), and rapid stellar rotation ($vsin{i}$ = 23 kms). Although the planet is Jupiter-sized, its mass is presently unknown due to high-amplitude radial velocity jitter. Nevertheless, V1298 Tau b may help constrain formation scenarios for at least one class of close-in exoplanets, providing a window into the nascent evolution of planetary interiors and atmospheres.
We report on the discovery and validation of TOI 813b (TIC 55525572 b), a transiting exoplanet identified by citizen scientists in data from NASAs Transiting Exoplanet Survey Satellite (TESS) and the first planet discovered by the Planet Hunters TESS project. The host star is a bright (V = 10.3 mag) subgiant ($R_star=1.94,R_odot$, $M_star=1.32,M_odot$). It was observed almost continuously by TESS during its first year of operations, during which time four individual transit events were detected. The candidate passed all the standard light curve-based vetting checks, and ground-based follow-up spectroscopy and speckle imaging enabled us to place an upper limit of $2 M_{Jup}$ (99 % confidence) on the mass of the companion, and to statistically validate its planetary nature. Detailed modelling of the transits yields a period of $83.8911_{ - 0.0031 } ^ { + 0.0027 }$ days, a planet radius of $6.71 pm 0.38$ $R_{oplus}$, and a semi major axis of $0.423_{ - 0.037 } ^ { + 0.031 }$ AU. The planets orbital period combined with the evolved nature of the host star places this object in a relatively under-explored region of parameter space. We estimate that TOI-813b induces a reflex motion in its host star with a semi-amplitude of $sim6$ ms$^{-1}$, making this system a promising target to measure the mass of a relatively long-period transiting planet.
We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System.
We report the discovery of K2-287b, a Saturn mass planet orbiting a G-dwarf with a period of $P approx 15$ days. First uncovered as a candidate using K2 campaign 15 data, follow-up photometry and spectroscopy were used to determine a mass of $M_P = 0.317 pm 0.026$ $M_J$, radius $R_P = 0.833 pm 0.013$ $R_J$, period $P = 14.893291 pm 0.000025$ days and eccentricity $e = 0.476 pm 0.026$. The host star is a metal-rich $V=11.410 pm 0.129$ mag G dwarf for which we estimate a mass $M_* = 1.056$ $M_odot$, radius $R_* = 1.07 pm 0.01$ $R_odot$, metallicity [Fe/H] = $0.20 pm 0.05$ and $T_{eff} = 5673 pm 75$ K. This warm eccentric planet with a time-averaged equilibrium temperature of $T_{eq} approx 800$ K adds to the small sample of giant planets orbiting nearby stars whose structure is not expected to be affected by stellar irradiation. Follow-up studies on the K2-287 system could help in constraining theories of migration of planets in close-in orbits.
We report the discovery of HAT-P-38b, a Saturn-mass exoplanet transiting the V=12.56 dwarf star GSC 2314-00559 on a P = 4.6404 d circular orbit. The host star is a 0.89Msun late G-dwarf, with solar metallicity, and a radius of 0.92Rsun. The planetary companion has a mass of 0.27MJ, and radius of 0.82RJ. HAT-P-38b is one of the closest planets in mass and radius to Saturn ever discovered.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا