Do you want to publish a course? Click here

K2-280b -- a low density warm sub-Saturn around a mildly evolved star

89   0   0.0 ( 0 )
 Added by Grzegorz Nowak
 Publication date 2020
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System.



rate research

Read More

We report the discovery of a warm sub-Saturn, TOI-257b (HD 19916b), based on data from NASAs Transiting Exoplanet Survey Satellite (TESS). The transit signal was detected by TESS and confirmed to be of planetary origin based on radial velocity observations. An analysis of the TESS photometry, the Minerva-Australis, FEROS, and HARPS radial velocities, and the asteroseismic data of the stellar oscillations reveals that TOI-257b has a mass of $M_P=0.138pm0.023$,$rm{M_J}$ ($43.9pm7.3$,$M_{rm oplus}$), a radius of $R_P=0.639pm0.013$,$rm{R_J}$ ($7.16pm0.15$,$R_{rm oplus}$), bulk density of $0.65^{+0.12}_{-0.11}$ (cgs), and period $18.38818^{+0.00085}_{-0.00084}$,$rm{days}$. TOI-257b orbits a bright ($mathrm{V}=7.612$,mag) somewhat evolved late F-type star with $M_*=1.390pm0.046$,$rm{M_{odot}}$, $R_*=1.888pm0.033$,$rm{R_{odot}}$, $T_{rm eff}=6075pm90$,$rm{K}$, and $vsin{i}=11.3pm0.5$,km,s$^{-1}$. Additionally, we find hints for a second non-transiting sub-Saturn mass planet on a $sim71$,day orbit using the radial velocity data. This system joins the ranks of a small number of exoplanet host stars ($sim100$) that have been characterized with asteroseismology. Warm sub-Saturns are rare in the known sample of exoplanets, and thus the discovery of TOI-257b is important in the context of future work studying the formation and migration history of similar planetary systems.
250 - V. Van Eylen , F. Dai , S. Mathur 2018
We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star ($V = 9.3$ mag) observed by the K2 mission with one-minute time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding the mass and radius to be $1.12^{+0.04}_{-0.01}~M_odot$ and $1.657^{+0.020}_{-0.004}~R_odot$, respectively. The star appears to have recently left the main sequence, based on the inferred age, $9.4^{+0.4}_{-1.3}~mathrm{Gyr}$, and the non-detection of mixed modes. The star hosts a warm Saturn ($P = 11.8$~days, $R_p = 6.86 pm 0.14~R_oplus$). Radial-velocity follow-up observations performed with the FIES, HARPS, and HARPS-N spectrographs show that the planet has a mass of $35.7 pm 3.3~M_oplus$. The data also show that the planets orbit is eccentric ($eapprox 0.2$). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to conform to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.
We report the discovery of Kepler-77b (alias KOI-127.01), a Saturn-mass transiting planet in a 3.6-day orbit around a metal-rich solar-like star. We combined the publicly available Kepler photometry (quarters 1-13) with high-resolution spectroscopy from the Sandiford@McDonald and FIES@NOT spectrographs. We derived the system parameters via a simultaneous joint fit to the photometric and radial velocity measurements. Our analysis is based on the Bayesian approach and is carried out by sampling the parameter posterior distributions using a Markov chain Monte Carlo simulation. Kepler-77b is a moderately inflated planet with a mass of Mp=0.430+/-0.032 Mjup, a radius of Rp=0.960+/-0.016 Rjup, and a bulk density of 0.603+/-0.055 g/cm^3. It orbits a slowly rotating (P=36+/-6 days) G5V star with M*=0.95+/-0.04 Msun, R*=0.99+/-0.02 Rsun, Teff=5520+/-60 K, [M/H]=0.20+/-0.05, that has an age of 7.5+/-2.0 Gyr. The lack of detectable planetary occultation with a depth higher than about 10 ppm implies a planet geometric and Bond albedo of Ag<0.087+/-0.008 and Ab<0.058+/-0.006, respectively, placing Kepler-77b among the gas-giant planets with the lowest albedo known so far. We found neither additional planetary transit signals nor transit-timing variations at a level of about 0.5 minutes, in accordance with the trend that close-in gas giant planets seem to belong to single-planet systems. The 106 transits observed in short-cadence mode by Kepler for nearly 1.2 years show no detectable signatures of the planets passage in front of starspots. We explored the implications of the absence of detectable spot-crossing events for the inclination of the stellar spin-axis, the sky-projected spin-orbit obliquity, and the latitude of magnetically active regions.
We report the discovery of K2-287b, a Saturn mass planet orbiting a G-dwarf with a period of $P approx 15$ days. First uncovered as a candidate using K2 campaign 15 data, follow-up photometry and spectroscopy were used to determine a mass of $M_P = 0.317 pm 0.026$ $M_J$, radius $R_P = 0.833 pm 0.013$ $R_J$, period $P = 14.893291 pm 0.000025$ days and eccentricity $e = 0.476 pm 0.026$. The host star is a metal-rich $V=11.410 pm 0.129$ mag G dwarf for which we estimate a mass $M_* = 1.056$ $M_odot$, radius $R_* = 1.07 pm 0.01$ $R_odot$, metallicity [Fe/H] = $0.20 pm 0.05$ and $T_{eff} = 5673 pm 75$ K. This warm eccentric planet with a time-averaged equilibrium temperature of $T_{eq} approx 800$ K adds to the small sample of giant planets orbiting nearby stars whose structure is not expected to be affected by stellar irradiation. Follow-up studies on the K2-287 system could help in constraining theories of migration of planets in close-in orbits.
We report the discovery of KELT-12b, a highly inflated Jupiter-mass planet transiting a mildly evolved host star. We identified the initial transit signal in the KELT-North survey data and established the planetary nature of the companion through precise follow-up photometry, high-resolution spectroscopy, precise radial velocity measurements, and high-resolution adaptive optics imaging. Our preferred best-fit model indicates that the $V = 10.64$ host, TYC 2619-1057-1, has $T_{rm eff} = 6278 pm 51$ K, $log{g_star} = 3.89^{+0.054}_{-0.051}$, and [Fe/H] = $0.19^{+0.083}_{-0.085}$, with an inferred mass $M_{star} = 1.59^{+0.071}_{-0.091} M_odot$ and radius $R_star = 2.37 pm 0.18 R_odot$. The planetary companion has $M_{rm P} = 0.95 pm 0.14 M_{rm J}$, $R_{rm P} = 1.79^{+0.18}_{-0.17} R_{rm J}$, $log{g_{rm P}} = 2.87^{+0.097}_{-0.098}$, and density $rho_{rm P} = 0.21^{+0.075}_{-0.054}$ g cm$^{-3}$, making it one of the most inflated giant planets known. The time of inferior conjunction in ${rm BJD_{TDB}}$ is $2457088.692055 pm 0.0009$ and the period is $P = 5.0316144 pm 0.0000306$ days. Despite the relatively large separation of $sim0.07$ AU implied by its $sim 5.03$-day orbital period, KELT-12b receives significant flux of $2.93^{+0.33}_{-0.30} times 10^9$ erg s$^{-1}$ cm$^{-2}$ from its host. We compare the radii and insolations of transiting gas-giant planets around hot ($T_{rm eff} geq 6250$ K) and cool stars, noting that the observed paucity of known transiting giants around hot stars with low insolation is likely due to selection effects. We underscore the significance of long-term ground-based monitoring of hot stars and space-based targeting of hot stars with the Transiting Exoplanet Survey Satellite (TESS) to search for inflated giants in longer-period orbits.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا