Do you want to publish a course? Click here

K2-287b: an Eccentric Warm Saturn transiting a G-dwarf

79   0   0.0 ( 0 )
 Added by Andres Jordan
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We report the discovery of K2-287b, a Saturn mass planet orbiting a G-dwarf with a period of $P approx 15$ days. First uncovered as a candidate using K2 campaign 15 data, follow-up photometry and spectroscopy were used to determine a mass of $M_P = 0.317 pm 0.026$ $M_J$, radius $R_P = 0.833 pm 0.013$ $R_J$, period $P = 14.893291 pm 0.000025$ days and eccentricity $e = 0.476 pm 0.026$. The host star is a metal-rich $V=11.410 pm 0.129$ mag G dwarf for which we estimate a mass $M_* = 1.056$ $M_odot$, radius $R_* = 1.07 pm 0.01$ $R_odot$, metallicity [Fe/H] = $0.20 pm 0.05$ and $T_{eff} = 5673 pm 75$ K. This warm eccentric planet with a time-averaged equilibrium temperature of $T_{eq} approx 800$ K adds to the small sample of giant planets orbiting nearby stars whose structure is not expected to be affected by stellar irradiation. Follow-up studies on the K2-287 system could help in constraining theories of migration of planets in close-in orbits.



rate research

Read More

We report the discovery from K2 of a transiting planet in an 18.25-d, eccentric (0.19$pm$ 0.04) orbit around K2-99, an 11th magnitude subgiant in Virgo. We confirm the planetary nature of the companion with radial velocities, and determine that the star is a metal-rich ([Fe/H] = 0.20$pm$0.05) subgiant, with mass $1.60^{+0.14}_{-0.10}~M_odot$ and radius $3.1pm 0.1~R_odot$. The planet has a mass of $0.97pm0.09~M_{rm Jup}$ and a radius $1.29pm0.05~R_{rm Jup}$. A measured systemic radial acceleration of $-2.12pm0.04~{rm m s^{-1} d^{-1}}$ offers compelling evidence for the existence of a third body in the system, perhaps a brown dwarf orbiting with a period of several hundred days.
250 - V. Van Eylen , F. Dai , S. Mathur 2018
We report the discovery and characterization of HD 89345b (K2-234b; EPIC 248777106b), a Saturn-sized planet orbiting a slightly evolved star. HD 89345 is a bright star ($V = 9.3$ mag) observed by the K2 mission with one-minute time sampling. It exhibits solar-like oscillations. We conducted asteroseismology to determine the parameters of the star, finding the mass and radius to be $1.12^{+0.04}_{-0.01}~M_odot$ and $1.657^{+0.020}_{-0.004}~R_odot$, respectively. The star appears to have recently left the main sequence, based on the inferred age, $9.4^{+0.4}_{-1.3}~mathrm{Gyr}$, and the non-detection of mixed modes. The star hosts a warm Saturn ($P = 11.8$~days, $R_p = 6.86 pm 0.14~R_oplus$). Radial-velocity follow-up observations performed with the FIES, HARPS, and HARPS-N spectrographs show that the planet has a mass of $35.7 pm 3.3~M_oplus$. The data also show that the planets orbit is eccentric ($eapprox 0.2$). An investigation of the rotational splitting of the oscillation frequencies of the star yields no conclusive evidence on the stellar inclination angle. We further obtained Rossiter-McLaughlin observations, which result in a broad posterior of the stellar obliquity. The planet seems to conform to the same patterns that have been observed for other sub-Saturns regarding planet mass and multiplicity, orbital eccentricity, and stellar metallicity.
We report the first results from a search for transiting warm Jupiter exoplanets - gas giant planets receiving stellar irradiation below about $10^8$ erg s$^{-1}$ cm$^{-2}$, equivalent to orbital periods beyond about 10 days around Sun-like stars. We have discovered two transiting warm Jupiter exoplanets initially identified as transiting candidates in ${it K2}$ photometry. K2-114b has a mass of $1.85^{+0.23}_{-0.22} M_J$, a radius of $0.942^{+0.032}_{-0.020} R_J$, and an orbital period of 11.4 days. K2-115b has a mass of $0.84^{+0.18}_{-0.20} M_J$, a radius of $1.115^{+0.057}_{-0.061} R_J$, and an orbital period of 20.3 days. Both planets are among the longest period transiting gas giant planets with a measured mass, and they are orbiting relatively old host stars. Both planets are not inflated as their radii are consistent with theoretical expectations. Their position in the planet radius - stellar irradiation diagram is consistent with the scenario where the radius - irradiation correlation levels off below about 10$^8$ erg s$^{-1}$ cm$^{-2}$, suggesting that for warm Jupiters the stellar irradiation does not play a significant role in determining the planet radius. We also report our identification of another ${it K2}$ transiting warm Jupiter candidate, EPIC 212504617, as a false positive.
We report the discovery by the HATSouth survey of HATS-6b, an extrasolar planet transiting a V=15.2 mag, i=13.7 mag M1V star with a mass of 0.57 Msun and a radius of 0.57 Rsun. HATS-6b has a period of P = 3.3253 d, mass of Mp=0.32 Mjup, radius of Rp=1.00 Rjup, and zero-albedo equilibrium temperature of Teq=712.8+-5.1 K. HATS-6 is one of the lowest mass stars known to host a close-in gas giant planet, and its transits are among the deepest of any known transiting planet system. We discuss the follow-up opportunities afforded by this system, noting that despite the faintness of the host star, it is expected to have the highest K-band S/N transmission spectrum among known gas giant planets with Teq < 750 K. In order to characterize the star we present a new set of empirical relations between the density, radius, mass, bolometric magnitude, and V, J, H and K-band bolometric corrections for main sequence stars with M < 0.80 Msun, or spectral types later than K5. These relations are calibrated using eclipsing binary components as well as members of resolved binary systems. We account for intrinsic scatter in the relations in a self-consistent manner. We show that from the transit-based stellar density alone it is possible to measure the mass and radius of a ~0.6 Msun star to ~7% and ~2% precision, respectively. Incorporating additional information, such as the V-K color, or an absolute magnitude, allows the precision to be improved by up to a factor of two.
We present an independent discovery and detailed characterisation of K2-280b, a transiting low density warm sub-Saturn in a 19.9-day moderately eccentric orbit (e = 0.35_{-0.04}^{+0.05}) from K2 campaign 7. A joint analysis of high precision HARPS, HARPS-N, and FIES radial velocity measurements and K2 photometric data indicates that K2-280b has a radius of R_b = 7.50 +/- 0.44 R_Earth and a mass of M_b = 37.1 +/- 5.6 M_Earth, yielding a mean density of 0.48_{-0.10}^{+0.13} g/cm^3. The host star is a mildly evolved G7 star with an effective temperature of T_{eff} = 5500 +/- 100 K, a surface gravity of log(g) = 4.21 +/- 0.05 (cgs), and an iron abundance of [Fe/H] = 0.33 +/- 0.08 dex, and with an inferred mass of M_star = 1.03 +/- 0.03 M_sun and a radius of R_star = 1.28 +/- 0.07 R_sun. We discuss the importance of K2-280b for testing formation scenarios of sub-Saturn planets and the current sample of this intriguing group of planets that are absent in the Solar System.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا