Do you want to publish a course? Click here

Analysis of point defects in graphene using low dose scanning transmission electron microscopy imaging and maximum likelihood reconstruction

79   0   0.0 ( 0 )
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Freestanding graphene displays an outstanding resilience to electron irradiation at low electron energies. Point defects in graphene are, however, subject to beam driven dynamics. This means that high resolution micrographs of point defects, which usually require a high electron irradiation dose might not represent the intrinsic defect population. Here, we capture the inital defects formed by ejecting carbon atoms under electron irradiation, by imaging with very low doses and subsequent reconstruction of the frequently occuring defects via a maximum likelihood algorithm.

rate research

Read More

Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10^-7 mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2x10^-10 mbar, and can be varied up to 10^-6 mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O2 and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two O atoms per molecule. H2 and N2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.
117 - Sei Morikawa 2015
We use scanning gate microscopy to map out the trajectories of ballistic carriers in high-mobility graphene encapsulated by hexagonal boron nitride and subject to a weak magnetic field. We employ a magnetic focusing geometry to image carriers that emerge ballistically from an injector, follow a cyclotron path due to the Lorentz force from an applied magnetic field, and land on an adjacent collector probe. The local electric field generated by the scanning tip in the vicinity of the carriers deflects their trajectories, modifying the proportion of carriers focused into the collector. By measuring the voltage at the collector while scanning the tip, we are able to obtain images with arcs that are consistent with the expected cyclotron motion. We also demonstrate that the tip can be used to redirect misaligned carriers back to the collector.
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
232 - S. Schnez , C. Rossler , T. Ihn 2011
We perform scanning-gate microscopy on a quantum-point contact. It is defined in a high-mobility two-dimensional electron gas of an AlGaAs/GaAs heterostructure, giving rise to a weak disorder potential. The lever arm of the scanning tip is significantly smaller than that of the split gates defining the conducting channel of the quantum-point contact. We are able to observe that the conducting channel is shifted in real space when asymmetric gate voltages are applied. The observed shifts are consistent with transport data and numerical estimations.
Point Projection Microscopy (PPM) is used to image suspended graphene using low-energy electrons (100-200eV). Because of the low energies used, the graphene is neither damaged or contaminated by the electron beam. The transparency of graphene is measured to be 74%, equivalent to electron transmission through a sheet as thick as twice the covalent radius of sp^2-bonded carbon. Also observed is rippling in the structure of the suspended graphene, with a wavelength of approximately 26 nm. The interference of the electron beam due to the diffraction off the edge of a graphene knife edge is observed and used to calculate a virtual source size of 4.7 +/- 0.6 Angstroms for the electron emitter. It is demonstrated that graphene can be used as both anode and substrate in PPM in order to avoid distortions due to strong field gradients around nano-scale objects. Graphene can be used to image objects suspended on the sheet using PPM, and in the future, electron holography.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا