No Arabic abstract
Transmission electron microscopy (TEM) is carried out in vacuum to minimize the interaction of the imaging electrons with gas molecules while passing through the microscope column. Nevertheless, in typical devices, the pressure remains at 10^-7 mbar or above, providing a large number of gas molecules for the electron beam to crack, which can lead to structural changes in the sample. Here, we describe experiments carried out in a modified scanning TEM (STEM) instrument, based on the Nion UltraSTEM 100. In this instrument, the base pressure at the sample is around 2x10^-10 mbar, and can be varied up to 10^-6 mbar through introduction of gases directly into the objective area while maintaining atomic resolution imaging conditions. We show that air leaked into the microscope column during the experiment is efficient in cleaning graphene samples from contamination, but ineffective in damaging the pristine lattice. Our experiments also show that exposure to O2 and H2O lead to a similar result, oxygen providing an etching effect nearly twice as efficient as water, presumably due to the two O atoms per molecule. H2 and N2 environments have no influence on etching. These results show that the residual gas environment in typical TEM instruments can have a large influence on the observations, and show that chemical etching of carbon-based structures can be effectively carried out with oxygen.
Electron tomography in materials science has flourished with the demand to characterize nanoscale materials in three dimensions (3D). Access to experimental data is vital for developing and validating reconstruction methods that improve resolution and reduce radiation dose requirements. This work presents five high-quality scanning transmission electron microscope (STEM) tomography datasets in order to address the critical need for open access data in this field. The datasets represent the current limits of experimental technique, are of high quality, and contain materials with structural complexity. Included are tomographic series of a hyperbranched Co2P nanocrystal, platinum nanoparticles on a carbon nanofibre imaged over the complete 180{deg} tilt range, a platinum nanoparticle and a tungsten needle both imaged at atomic resolution by equal slope tomography, and a through-focal tilt series of PtCu nanoparticles. A volumetric reconstruction from every dataset is provided for comparison and development of post-processing and visualization techniques. Researchers interested in creating novel data processing and reconstruction algorithms will now have access to state of the art experimental test data.
Freestanding graphene displays an outstanding resilience to electron irradiation at low electron energies. Point defects in graphene are, however, subject to beam driven dynamics. This means that high resolution micrographs of point defects, which usually require a high electron irradiation dose might not represent the intrinsic defect population. Here, we capture the inital defects formed by ejecting carbon atoms under electron irradiation, by imaging with very low doses and subsequent reconstruction of the frequently occuring defects via a maximum likelihood algorithm.
Thin film oxides are a source of endless fascination for the materials scientist. These materials are highly flexible, can be integrated into almost limitless combinations, and exhibit many useful functionalities for device applications. While precision synthesis techniques, such as molecular beam epitaxy (MBE) and pulsed laser deposition (PLD), provide a high degree of control over these systems, there remains a disconnect between ideal and realized materials. Because thin films adopt structures and chemistries distinct from their bulk counterparts, it is often difficult to predict what properties will emerge. The complex energy landscape of the synthesis process is also strongly influenced by non-equilibrium growth conditions imposed by the substrate, as well as the kinetics of thin film crystallization and fluctuations in process variables, all of which can lead to significant deviations from targeted outcomes. High-resolution structural and chemical characterization techniques, as described in this volume, are needed to verify growth models, bound theoretical calculations, and guide materials design. While many characterization options exist, most are spatially-averaged or indirect, providing only partial insight into the complex behavior of these systems. Over the past several decades, scanning transmission electron microscopy (STEM) has become a cornerstone of oxide heterostructure characterization owing to its ability to simultaneously resolve structure, chemistry, and defects at the highest spatial resolution. STEM methods are an essential complement to averaged scattering techniques, offering a direct picture of resulting materials that can inform and refine the growth process to achieve targeted properties. There is arguably no other technique that can provide such a broad array of information at the atomic-scale, all within a single experimental session.
Scanning transmission electron microscopy (STEM) is now the primary tool for exploring functional materials on the atomic level. Often, features of interest are highly localized in specific regions in the material, such as ferroelectric domain walls, extended defects, or second phase inclusions. Selecting regions to image for structural and chemical discovery via atomically resolved imaging has traditionally proceeded via human operators making semi-informed judgements on sampling locations and parameters. Recent efforts at automation for structural and physical discovery have pointed towards the use of active learning methods that utilize Bayesian optimization with surrogate models to quickly find relevant regions of interest. Yet despite the potential importance of this direction, there is a general lack of certainty in selecting relevant control algorithms and how to balance a priori knowledge of the material system with knowledge derived during experimentation. Here we address this gap by developing the automated experiment workflows with several combinations to both illustrate the effects of these choices and demonstrate the tradeoffs associated with each in terms of accuracy, robustness, and susceptibility to hyperparameters for structural discovery. We discuss possible methods to build descriptors using the raw image data and deep learning based semantic segmentation, as well as the implementation of variational autoencoder based representation. Furthermore, each workflow is applied to a range of feature sizes including NiO pillars within a La:SrMnO$_3$ matrix, ferroelectric domains in BiFeO$_3$, and topological defects in graphene. The code developed in this manuscript are open sourced and will be released at github.com/creangnc/AE_Workflows.
Scanning transmission electron microscopy (STEM) has advanced rapidly in the last decade thanks to the ability to correct the major aberrations of the probe forming lens. Now atomic-sized beams are routine, even at accelerating voltages as low as 40 kV, allowing knock-on damage to be minimized in beam sensitive materials. The aberration-corrected probes can contain sufficient current for high quality, simultaneous, imaging and analysis in multiple modes. Atomic positions can be mapped with picometer precision, revealing ferroelectric domain structures, composition can be mapped by energy dispersive X-ray spectroscopy (EDX) and electron energy loss spectroscopy (EELS) and charge transfer can be tracked unit cell by unit cell using the EELS fine structure. Furthermore, dynamics of point defects can be investigated through rapid acquisition of multiple image scans. Today STEM has become an indispensable tool for analytical science at the atomic level, providing a whole new level of insights into the complex interplays that control materials properties.