Do you want to publish a course? Click here

Understanding Urban Human Mobility through Crowdsensed Data

108   0   0.0 ( 0 )
 Added by Yuren Zhou
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Understanding how people move in the urban area is important for solving urbanization issues, such as traffic management, urban planning, epidemic control, and communication network improvement. Leveraging recent availability of large amounts of diverse crowdsensed data, many studies have made contributions to this field in various aspects. They need proper review and summary. In this paper, therefore, we first review these recent studies with a proper taxonomy with corresponding examples. Then, based on the experience learnt from the studies, we provide a comprehensive tutorial for future research, which introduces and discusses popular crowdsensed data types, different human mobility subjects, and common data preprocessing and analysis methods. Special emphasis is made on the matching between data types and mobility subjects. Finally, we present two research projects as case studies to demonstrate the entire process of understanding urban human mobility through crowdsensed data in city-wide scale and building-wide scale respectively. Beyond demonstration purpose, the two case studies also make contributions to their category of certain crowdsensed data type and mobility subject.



rate research

Read More

Predicting human mobility flows at different spatial scales is challenged by the heterogeneity of individual trajectories and the multi-scale nature of transportation networks. As vast amounts of digital traces of human behaviour become available, an opportunity arises to improve mobility models by integrating into them proxy data on mobility collected by a variety of digital platforms and location-aware services. Here we propose a hybrid model of human mobility that integrates a large-scale publicly available dataset from a popular photo-sharing system with the classical gravity model, under a stacked regression procedure. We validate the performance and generalizability of our approach using two ground-truth datasets on air travel and daily commuting in the United States: using two different cross-validation schemes we show that the hybrid model affords enhanced mobility prediction at both spatial scales.
61 - Geoff Boeing 2020
This chapter introduces OpenStreetMap - a crowd-sourced, worldwide mapping project and geospatial data repository - to illustrate its usefulness in quickly and easily analyzing and visualizing planning and design outcomes in the built environment. It demonstrates the OSMnx toolkit for automatically downloading, modeling, analyzing, and visualizing spatial big data from OpenStreetMap. We explore patterns and configurations in street networks and buildings around the world computationally through visualization methods - including figure-ground diagrams and polar histograms - that help compress urban complexity into comprehensible artifacts that reflect the human experience of the built environment. Ubiquitous urban data and computation can open up new urban form analyses from both quantitative and qualitative perspectives.
238 - M.C. Gonzalez , C.A. Hidalgo , 2008
Despite their importance for urban planning, traffic forecasting, and the spread of biological and mobile viruses, our understanding of the basic laws governing human motion remains limited thanks to the lack of tools to monitor the time resolved location of individuals. Here we study the trajectory of 100,000 anonymized mobile phone users whose position is tracked for a six month period. We find that in contrast with the random trajectories predicted by the prevailing Levy flight and random walk models, human trajectories show a high degree of temporal and spatial regularity, each individual being characterized by a time independent characteristic length scale and a significant probability to return to a few highly frequented locations. After correcting for differences in travel distances and the inherent anisotropy of each trajectory, the individual travel patterns collapse into a single spatial probability distribution, indicating that despite the diversity of their travel history, humans follow simple reproducible patterns. This inherent similarity in travel patterns could impact all phenomena driven by human mobility, from epidemic prevention to emergency response, urban planning and agent based modeling.
The research objectives are exploring characteristics of human mobility patterns, subsequently modelling them mathematically depending on inter-event time and traveled distances parameters using CDRs (Call Detailed Records). The observations are obtained from Armada festival in France. Understanding, modelling and simulating human mobility among urban regions is excitement approach, due to itsimportance in rescue situations for various events either indoor events like evacuation of buildings or outdoor ones like public assemblies,community evacuation in casesemerged during emergency situations, moreover serves urban planning and smart cities.
The outbreak of COVID-19 highlights the need for a more harmonized, less privacy-concerning, easily accessible approach to monitoring the human mobility that has been proved to be associated with the viral transmission. In this study, we analyzed 587 million tweets worldwide to see how global collaborative efforts in reducing human mobility are reflected from the user-generated information at the global, country, and the U.S. state scale. Considering the multifaceted nature of mobility, we propose two types of distance: the single-day distance and the cross-day distance. To quantify the responsiveness in certain geographical regions, we further propose a mobility-based responsive index (MRI) that captures the overall degree of mobility changes within a time window. The results suggest that mobility patterns obtained from Twitter data are amendable to quantitatively reflect the mobility dynamics. Globally, the proposed two distances had greatly deviated from their baselines after March 11, 2020, when WHO declared COVID-19 as a pandemic. The considerably less periodicity after the declaration suggests that the protection measures have obviously affected peoples travel routines. The country scale comparisons reveal the discrepancies in responsiveness, evidenced by the contrasting mobility patterns in different epidemic phases. We find that the triggers of mobility changes correspond well with the national announcements of mitigation measures. In the U.S., the influence of the COVID-19 pandemic on mobility is distinct. However, the impacts varied substantially among states. The strong mobility recovering momentum is further fueled by the Black Lives Matter protests, potentially fostering the second wave of infections in the U.S.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا