Do you want to publish a course? Click here

TiEV: The Tongji Intelligent Electric Vehicle in the Intelligent Vehicle Future Challenge of China

74   0   0.0 ( 0 )
 Added by Junqiao Zhao
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

TiEV is an autonomous driving platform implemented by Tongji University of China. The vehicle is drive-by-wire and is fully powered by electricity. We devised the software system of TiEV from scratch, which is capable of driving the vehicle autonomously in urban paths as well as on fast express roads. We describe our whole system, especially novel modules of probabilistic perception fusion, incremental mapping, the 1st and the 2nd planning and the overall safety concern. TiEV finished 2016 and 2017 Intelligent Vehicle Future Challenge of China held at Changshu. We show our experiences on the development of autonomous vehicles and future trends.



rate research

Read More

58 - Weijia Zhang , Hao Liu , Fan Wang 2021
Electric Vehicle (EV) has become a preferable choice in the modern transportation system due to its environmental and energy sustainability. However, in many large cities, EV drivers often fail to find the proper spots for charging, because of the limited charging infrastructures and the spatiotemporally unbalanced charging demands. Indeed, the recent emergence of deep reinforcement learning provides great potential to improve the charging experience from various aspects over a long-term horizon. In this paper, we propose a framework, named Multi-Agent Spatio-Temporal Reinforcement Learning (Master), for intelligently recommending public accessible charging stations by jointly considering various long-term spatiotemporal factors. Specifically, by regarding each charging station as an individual agent, we formulate this problem as a multi-objective multi-agent reinforcement learning task. We first develop a multi-agent actor-critic framework with the centralized attentive critic to coordinate the recommendation between geo-distributed agents. Moreover, to quantify the influence of future potential charging competition, we introduce a delayed access strategy to exploit the knowledge of future charging competition during training. After that, to effectively optimize multiple learning objectives, we extend the centralized attentive critic to multi-critics and develop a dynamic gradient re-weighting strategy to adaptively guide the optimization direction. Finally, extensive experiments on two real-world datasets demonstrate that Master achieves the best comprehensive performance compared with nine baseline approaches.
The neuromorphic camera is a brand new vision sensor that has emerged in recent years. In contrast to the conventional frame-based camera, the neuromorphic camera only transmits local pixel-level changes at the time of its occurrence and provides an asynchronous event stream with low latency. It has the advantages of extremely low signal delay, low transmission bandwidth requirements, rich information of edges, high dynamic range etc., which make it a promising sensor in the application of in-vehicle visual odometry system. This paper proposes a neuromorphic in-vehicle visual odometry system using feature tracking algorithm. To the best of our knowledge, this is the first in-vehicle visual odometry system that only uses a neuromorphic camera, and its performance test is carried out on actual driving datasets. In addition, an in-depth analysis of the results of the experiment is provided. The work of this paper verifies the feasibility of in-vehicle visual odometry system using neuromorphic cameras.
96 - Shaoshan Liu , Bo Yu , Jie Tang 2021
The infrastructure-vehicle cooperative autonomous driving approach depends on the cooperation between intelligent roads and intelligent vehicles. This approach is not only safer but also more economical compared to the traditional on-vehicle-only autonomous driving approach. In this paper, we introduce our real-world deployment experiences of cooperative autonomous driving, and delve into the details of new challenges and opportunities. Specifically, based on our progress towards commercial deployment, we follow a three-stage development roadmap of the cooperative autonomous driving approach:infrastructure-augmented autonomous driving (IAAD), infrastructure-guided autonomous driving (IGAD), and infrastructure-planned autonomous driving (IPAD).
Electric Vehicles (EVs) can help alleviate our reliance on fossil fuels for transport and electricity systems. However, charging millions of EV batteries requires management to prevent overloading the electricity grid and minimise costly upgrades that are ultimately paid for by consumers. Managed chargers, such as Vehicle-to-Grid (V2G) chargers, allow control over the time, speed and direction of charging. Such control assists in balancing electricity supply and demand across a green electricity system and could reduce costs for consumers. Smart and V2G chargers connect EVs to the power grid using a charging device which includes a data connection to exchange information and control commands between various entities in the EV ecosystem. This introduces data privacy concerns and is a potential target for cyber-security attacks. Therefore, the implementation of a secure system is crucial to permit both consumers and electricity system operators to trust smart charging and V2G. In principle, we already have the technology needed for a connected EV charging infrastructure to be securely enabled, borrowing best practices from the Internet and industrial control systems. We must properly adapt the security technology to take into account the challenges peculiar to the EV charging infrastructure. Challenges go beyond technical considerations and other issues arise such as balancing trade-offs between security and other desirable qualities such as interoperability, scalability, crypto-agility, affordability and energy efficiency. This document reviews security and privacy topics relevant to the EV charging ecosystem with a focus on smart charging and V2G.
399 - Tianyu Liu , Qinghai Liao , Lu Gan 2020
Since early 2020, the coronavirus disease 2019 (COVID-19) has spread rapidly across the world. As at the date of writing this article, the disease has been globally reported in 223 countries and regions, infected over 108 million people and caused over 2.4 million deaths (https://covid19.who.int/, accessed on Feb. 17, 2021). Avoiding person-to-person transmission is an effective approach to control and prevent the pandemic. However, many daily activities, such as transporting goods in our daily life, inevitably involve person-to-person contact. Using an autonomous logistic vehicle to achieve contact-less goods transportation could alleviate this issue. For example, it can reduce the risk of virus transmission between the driver and customers. Moreover, many countries have imposed tough lockdown measures to reduce the virus transmission (e.g., retail, catering) during the pandemic, which causes inconveniences for human daily life. Autonomous vehicle can deliver the goods bought by humans, so that humans can get the goods without going out. These demands motivate us to develop an autonomous vehicle, named as Hercules, for contact-less goods transportation during the COVID-19 pandemic. The vehicle is evaluated through real-world delivering tasks under various traffic conditions.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا