Do you want to publish a course? Click here

Towards Fully Intelligent Transportation through Infrastructure-Vehicle Cooperative Autonomous Driving: Challenges and Opportunities

97   0   0.0 ( 0 )
 Added by Shaoshan Liu
 Publication date 2021
and research's language is English




Ask ChatGPT about the research

The infrastructure-vehicle cooperative autonomous driving approach depends on the cooperation between intelligent roads and intelligent vehicles. This approach is not only safer but also more economical compared to the traditional on-vehicle-only autonomous driving approach. In this paper, we introduce our real-world deployment experiences of cooperative autonomous driving, and delve into the details of new challenges and opportunities. Specifically, based on our progress towards commercial deployment, we follow a three-stage development roadmap of the cooperative autonomous driving approach:infrastructure-augmented autonomous driving (IAAD), infrastructure-guided autonomous driving (IGAD), and infrastructure-planned autonomous driving (IPAD).



rate research

Read More

399 - Tianyu Liu , Qinghai Liao , Lu Gan 2020
Since early 2020, the coronavirus disease 2019 (COVID-19) has spread rapidly across the world. As at the date of writing this article, the disease has been globally reported in 223 countries and regions, infected over 108 million people and caused over 2.4 million deaths (https://covid19.who.int/, accessed on Feb. 17, 2021). Avoiding person-to-person transmission is an effective approach to control and prevent the pandemic. However, many daily activities, such as transporting goods in our daily life, inevitably involve person-to-person contact. Using an autonomous logistic vehicle to achieve contact-less goods transportation could alleviate this issue. For example, it can reduce the risk of virus transmission between the driver and customers. Moreover, many countries have imposed tough lockdown measures to reduce the virus transmission (e.g., retail, catering) during the pandemic, which causes inconveniences for human daily life. Autonomous vehicle can deliver the goods bought by humans, so that humans can get the goods without going out. These demands motivate us to develop an autonomous vehicle, named as Hercules, for contact-less goods transportation during the COVID-19 pandemic. The vehicle is evaluated through real-world delivering tasks under various traffic conditions.
Designing or learning an autonomous driving policy is undoubtedly a challenging task as the policy has to maintain its safety in all corner cases. In order to secure safety in autonomous driving, the ability to detect hazardous situations, which can be seen as an out-of-distribution (OOD) detection problem, becomes crucial. However, most conventional datasets only provide expert driving demonstrations, although some non-expert or uncommon driving behavior data are needed to implement a safety guaranteed autonomous driving platform. To this end, we present a novel dataset called the R3 Driving Dataset, composed of driving data with different qualities. The dataset categorizes abnormal driving behaviors into eight categories and 369 different detailed situations. The situations include dangerous lane changes and near-collision situations. To further enlighten how these abnormal driving behaviors can be detected, we utilize different uncertainty estimation and anomaly detection methods to the proposed dataset. From the results of the proposed experiment, it can be inferred that by using both uncertainty estimation and anomaly detection, most of the abnormal cases in the proposed dataset can be discriminated. The dataset of this paper can be downloaded from https://rllab-snu.github.io/projects/R3-Driving-Dataset/doc.html.
Computing has dramatically changed nearly every aspect of our lives, from business and agriculture to communication and entertainment. As a nation, we rely on computing in the design of systems for energy, transportation and defense; and computing fuels scientific discoveries that will improve our fundamental understanding of the world and help develop solutions to major challenges in health and the environment. Computing has changed our world, in part, because our innovations can run on computers whose performance and cost-performance has improved a million-fold over the last few decades. A driving force behind this has been a repeated doubling of the transistors per chip, dubbed Moores Law. A concomitant enabler has been Dennard Scaling that has permitted these performance doublings at roughly constant power, but, as we will see, both trends face challenges. Consider for a moment the impact of these two trends over the past 30 years. A 1980s supercomputer (e.g. a Cray 2) was rated at nearly 2 Gflops and consumed nearly 200 KW of power. At the time, it was used for high performance and national-scale applications ranging from weather forecasting to nuclear weapons research. A computer of similar performance now fits in our pocket and consumes less than 10 watts. What would be the implications of a similar computing/power reduction over the next 30 years - that is, taking a petaflop-scale machine (e.g. the Cray XK7 which requires about 500 KW for 1 Pflop (=1015 operations/sec) performance) and repeating that process? What is possible with such a computer in your pocket? How would it change the landscape of high capacity computing? In the remainder of this paper, we articulate some opportunities and challenges for dramatic performance improvements of both personal to national scale computing, and discuss some out of the box possibilities for achieving computing at this scale.
Autonomous Driving is now the promising future of transportation. As one basis for autonomous driving, High Definition Map (HD map) provides high-precision descriptions of the environment, therefore it enables more accurate perception and localization while improving the efficiency of path planning. However, an extremely large amount of map data needs to be transmitted during driving, thus posing great challenge for real-time and safety requirements for autonomous driving. To this end, we first demonstrate how the existing data distribution mechanism can support HD map services. Furthermore, considering the constraints of vehicle power, vehicle speed, base station bandwidth, etc., we propose a HD map data distribution mechanism on top of Vehicle-to-Infrastructure (V2I) data transmission. By this mechanism, the map provision task is allocated to the selected RSU nodes and transmits proportionate HD map data cooperatively. Their works on map data loading aims to provide in-time HD map data service with optimized in-vehicle energy consumption. Finally, we model the selection of RSU nodes into a partial knapsack problem and propose a greedy strategy-based data transmission algorithm. Experimental results confirm that within limited energy consumption, the proposed mechanism can ensure HD map data service by coordinating multiple RSUs with the shortest data transmission time.
As safety-critical autonomous vehicles (AVs) will soon become pervasive in our society, a number of safety concepts for trusted AV deployment have been recently proposed throughout industry and academia. Yet, agreeing upon an appropriate safety concept is still an elusive task. In this paper, we advocate for the use of Hamilton Jacobi (HJ) reachability as a unifying mathematical framework for comparing existing safety concepts, and propose ways to expand its modeling premises in a data-driven fashion. Specifically, we show that (i) existing predominant safety concepts can be embedded in the HJ reachability framework, thereby enabling a common language for comparing and contrasting modeling assumptions, and (ii) HJ reachability can serve as an inductive bias to effectively reason, in a data-driven context, about two critical, yet often overlooked aspects of safety: responsibility and context-dependency.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا