Do you want to publish a course? Click here

Tuning effective hyperfine fields in PEDOT:PSS thin films by doping

79   0   0.0 ( 0 )
 Added by Hans Malissa
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

Using electrically detected magnetic resonance spectroscopy, we demonstrate that doping the conducting polymer poly(3,4-ethylenedioxythiophene):poly(styrene-sulfonate) (PEDOT:PSS) with ethylene glycol allows for the control of effective local charge carrier hyperfine fields through motional narrowing. These results suggest that doping of organic semiconductors could enable the tuning of macroscopic material properties dependent on hyperfine fields such as magnetoresistance, the magneto-optical responses and spin-diffusion.



rate research

Read More

142 - F.Rortais , S.Lee , R.Ohshima 2018
We demonstrate an enhancement of the spin-orbit coupling in silicon (Si) thin films by doping with bismuth (Bi), a heavy metal, using ion implantation. Quantum corrections to conductance at low temperature in phosphorous-doped Si before and after Bi implantation is measured to probe the increase of the spin-orbit coupling, and a clear modification of magnetoconductance signals is observed: Bi doping changes magnetoconductance from weak localization to the crossover between weak localization and weak antilocalization. The elastic diffusion length, phase coherence length and spin-orbit coupling length in Si with and without Bi implantation are estimated, and the spin-orbit coupling length after the Bi doping becomes the same order of magnitude (Lso = 54 nm) with the phase coherence length (L{phi} = 35 nm) at 2 K. This is an experimental proof that the spin-orbit coupling strength in Si thin film is tunable by doping with heavy metals.
Structural degeneracies underpin the ferroic behavior of next-generation two-dimensional materials, and lead to peculiar two-dimensional structural transformations under external fields, charge doping and/or temperature. The most direct indicator of the ease of these transformations is an {em elastic energy barrier}, defined as the energy difference between the (degenerate) structural ground state unit cell, and a unit cell with an increased structural symmetry. Proximity of a two-dimensional material to a bulk substrate can affect the magnitude of the critical fields and/or temperature at which these transformations occur, with the first effect being a relative charge transfer, which could trigger a structural quantum phase transition. With this physical picture in mind, we report the effect of modest charge doping (within $-0.2$ and $+0.2$ electrons per unit cell) on the elastic energy barrier of ferroelastic black phosphorene and nine ferroelectric monochalcogenide monolayers. The elastic energy barrier $J_s$ is the energy needed to create a $Pnm2_1to P4/nmm$ two-dimensional structural transformation. Similar to the effect on the elastic energy barrier of ferroelastic SnO monolayers, group-IV monochalcogenide monolayers show a tunable elastic energy barrier for similar amounts of doping: a decrease (increase) of $J_s$ can be engineered under a modest hole (electron) doping of no more than one tenth of an electron or a hole per atom.
We discuss pinning properties of MgB2 thin films grown by pulsed-laser deposition (PLD) and by electron-beam (EB) evaporation. Two mechanisms are identified that contribute most effectively to the pinning of vortices in randomly oriented films. The EB process produces low defected crystallites with small grain size providing enhanced pinning at grain boundaries without degradation of Tc. The PLD process produces films with structural disorder on a scale less that the coherence length that further improves pinning, but also depresses Tc.
We investigate generation of exchange magnons by ultrashort, picosecond acoustic pulses propagating through ferromagnetic thin films. Using the Landau-Lifshitz-Gilbert equations we derive the dispersion relation for exchange magnons for an external magnetic field tilted with respect to the film normal. Decomposing the solution in a series of standing spin wave modes, we derive a system of ordinary differential equations and driven harmonic oscillator equations describing the dynamics of individual magnon mode. The external magnetoelastic driving force is given by the time-dependent spatial Fourier components of acoustic strain pulses inside the layer. Dependencies of the magnon excitation efficiencies on the duration of the acoustic pulses and the external magnetic field highlight the role of acoustic bandwidth and phonon-magnon phase matching. Our simulations for ferromagnetic nickel evidence the possibility of ultrafast magneto-acoustic excitation of exchange magnons within the bandwidth of acoustic pulses in thin samples under conditions readily obtained in femtosecond pump-probe experiments.
We have studied structural and superconducting properties of MgB2 thin films doped with carbon during the hybrid physical-chemical vapor deposition process. A carbon-containing metalorganic precursor bis(cyclopentadienyl)magnesium was added to the carrier gas to achieve carbon doping. As the amount of carbon in the films increases, the resistivity increases, Tc decreases, and the upper critical field increases dramatically as compared to the clean films. The self-field Jc in the carbon-doped films is lower than that in the clean films, but Jc remains relatively high to much higher magnetic fields, indicating stronger pinning. Structurally, the doped films are textured with nano-grains and highly resistive amorphous areas at the grain boundaries. The carbon doping approach can be used to produce MgB2 materials for high magnetic field applications.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا