No Arabic abstract
Recently, the online car-hailing service, Didi, has emerged as a leader in the sharing economy. Used by passengers and drivers extensive, it becomes increasingly important for the car-hailing service providers to minimize the waiting time of passengers and optimize the vehicle utilization, thus to improve the overall user experience. Therefore, the supply-demand estimation is an indispensable ingredient of an efficient online car-hailing service. To improve the accuracy of the estimation results, we analyze the implicit relationships between the points of Interest (POI) and the supply-demand gap in this paper. The different categories of POIs have positive or negative effects on the estimation, we propose a POI selection scheme and incorporate it into XGBoost [1] to achieve more accurate estimation results. Our experiment demonstrates our method provides more accurate estimation results and more stable estimation results than the existing methods.
In this paper we present the first population-level, city-scale analysis of application usage on smartphones. Using deep packet inspection at the network operator level, we obtained a geo-tagged dataset with more than 6 million unique devices that launched more than 10,000 unique applications across the city of Shanghai over one week. We develop a technique that leverages transfer learning to predict which applications are most popular and estimate the whole usage distribution based on the Point of Interest (POI) information of that particular location. We demonstrate that our technique has an 83.0% hitrate in successfully identifying the top five popular applications, and a 0.15 RMSE when estimating usage with just 10% sampled sparse data. It outperforms by about 25.7% over the existing state-of-the-art approaches. Our findings pave the way for predicting which apps are relevant to a user given their current location, and which applications are popular where. The implications of our findings are broad: it enables a range of systems to benefit from such timely predictions, including operating systems, network operators, appstores, advertisers, and service providers.
This paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate the risks.
When we consult with a doctor, lawyer, or financial advisor, we generally assume that they are acting in our best interests. But what should we assume when it is an artificial intelligence (AI) system that is acting on our behalf? Early examples of AI assistants like Alexa, Siri, Google, and Cortana already serve as a key interface between consumers and information on the web, and users routinely rely upon AI-driven systems like these to take automated actions or provide information. Superficially, such systems may appear to be acting according to user interests. However, many AI systems are designed with embedded conflicts of interests, acting in ways that subtly benefit their creators (or funders) at the expense of users. To address this problem, in this paper we introduce the concept of AI loyalty. AI systems are loyal to the degree that they are designed to minimize, and make transparent, conflicts of interest, and to act in ways that prioritize the interests of users. Properly designed, such systems could have considerable functional and competitive - not to mention ethical - advantages relative to those that do not. Loyal AI products hold an obvious appeal for the end-user and could serve to promote the alignment of the long-term interests of AI developers and customers. To this end, we suggest criteria for assessing whether an AI system is sufficiently transparent about conflicts of interest, and acting in a manner that is loyal to the user, and argue that AI loyalty should be considered during the technological design process alongside other important values in AI ethics such as fairness, accountability privacy, and equity. We discuss a range of mechanisms, from pure market forces to strong regulatory frameworks, that could support incorporation of AI loyalty into a variety of future AI systems.
In the paper, a problem of forecasting promotion efficiency is raised. The authors propose a new approach, using the gradient boosting method for this task. Six performance indicators are introduced to capture the promotion effect. For each of them, within predefined groups of products, a model was trained. A description of using these models for forecasting and optimising promotion efficiency is provided. Data preparation and hyperparameters tuning processes are also described. The experiments were performed for three groups of products from a large grocery company.
Internet of Things (IoT) devices are rapidly becoming universal. The success of IoT cannot be ignored in the scenario today, along with its attacks and threats on IoT devices and facilities are also increasing day by day. Cyber attacks become a part of IoT and affecting the life and society of users, so steps must be taken to defend cyber seriously. Cybercrimes threaten the infrastructure of governments and businesses globally and can damage the users in innumerable ways. With the global cybercrime damages predicted to cost up to 6 trillion dollars annually on the global economy by cyber crime. Estimated of 328 Million Dollar annual losses with the cyber attacks in Australia itself. Various steps are taken to slow down these attacks but unfortunately not able to achieve success properly. Therefor secure IoT is the need of this time and understanding of attacks and threats in IoT structure should be studied. The reasons for cyber-attacks can be Countries having week cyber securities, Cybercriminals use new technologies to attack, Cybercrime is possible with services and other business schemes. MSP (Managed Service Providers) face different difficulties in fighting with Cyber-crime. They have to ensure that security of the customer as well as their security in terms of their servers, devices, and systems. Hence, they must use effective, fast, and easily usable antivirus and antimalware tools.