Do you want to publish a course? Click here

The Potential Impact of Quantum Computers on Society

73   0   0.0 ( 0 )
 Added by Ronald de Wolf
 Publication date 2017
and research's language is English




Ask ChatGPT about the research

This paper considers the potential impact that the nascent technology of quantum computing may have on society. It focuses on three areas: cryptography, optimization, and simulation of quantum systems. We will also discuss some ethical aspects of these developments, and ways to mitigate the risks.



rate research

Read More

In this work, we describe a full-stack pipeline for natural language processing on near-term quantum computers, aka QNLP. The language-modelling framework we employ is that of compositional distributional semantics (DisCoCat), which extends and complements the compositional structure of pregroup grammars. Within this model, the grammatical reduction of a sentence is interpreted as a diagram, encoding a specific interaction of words according to the grammar. It is this interaction which, together with a specific choice of word embedding, realises the meaning (or semantics) of a sentence. Building on the formal quantum-like nature of such interactions, we present a method for mapping DisCoCat diagrams to quantum circuits. Our methodology is compatible both with NISQ devices and with established Quantum Machine Learning techniques, paving the way to near-term applications of quantum technology to natural language processing.
Benchmarking is how the performance of a computing system is determined. Surprisingly, even for classical computers this is not a straightforward process. One must choose the appropriate benchmark and metrics to extract meaningful results. Different benchmarks test the system in different ways and each individual metric may or may not be of interest. Choosing the appropriate approach is tricky. The situation is even more open ended for quantum computers, where there is a wider range of hardware, fewer established guidelines, and additional complicating factors. Notably, quantum noise significantly impacts performance and is difficult to model accurately. Here, we discuss benchmarking of quantum computers from a computer architecture perspective and provide numerical simulations highlighting challenges which suggest caution.
In this work, we study the real-time evolution of periodically driven (Floquet) systems on a quantum computer using IBM quantum devices. We consider a driven Landau-Zener model and compute the transition probability between the Floquet steady states as a function of time. We find that for this simple one-qubit model, Floquet states can develop in real-time, as indicated by the transition probability between Floquet states. Next, we model light-driven spin chains and compute the time-dependent antiferromagnetic order parameter. We consider models arising from light coupling to the underlying electrons as well as those arising from light coupling to phonons. For the two-spin chains, the quantum devices yield time evolutions that match the effective Floquet Hamiltonian evolution for both models once readout error mitigation is included. For three-spin chains, zero-noise extrapolation yields a time dependence that follows the effective Floquet time evolution. Therefore, the current IBM quantum devices can provide information on the dynamics of small Floquet systems arising from light drives once error mitigation procedures are implemented.
Intelligence services are playing an increasingly important role in the operation of our society. Exploring the evolution mechanism, boundaries and challenges of service ecosystem is essential to our ability to realize smart society, reap its benefits and prevent potential risks. We argue that this necessitates a broad scientific research agenda to study service ecosystem that incorporates and expands upon the disciplines of computer science and includes insights from across the sciences. We firstly outline a set of research issues that are fundamental to this emerging field, and then explores the technical, social, legal and institutional challenges on the study of service ecosystem.
The increasing generation and collection of personal data has created a complex ecosystem, often collaborative but sometimes combative, around companies and individuals engaging in the use of these data. We propose that the interactions between these agents warrants a new topic of study: Human-Data Interaction (HDI). In this paper we discuss how HDI sits at the intersection of various disciplines, including computer science, statistics, sociology, psychology and behavioural economics. We expose the challenges that HDI raises, organised into three core themes of legibility, agency and negotiability, and we present the HDI agenda to open up a dialogue amongst interested parties in the personal and big data ecosystems.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا