Do you want to publish a course? Click here

QA4IE: A Question Answering based Framework for Information Extraction

110   0   0.0 ( 0 )
 Added by Lin Qiu
 Publication date 2018
and research's language is English




Ask ChatGPT about the research

Information Extraction (IE) refers to automatically extracting structured relation tuples from unstructured texts. Common IE solutions, including Relation Extraction (RE) and open IE systems, can hardly handle cross-sentence tuples, and are severely restricted by limited relation types as well as informal relation specifications (e.g., free-text based relation tuples). In order to overcome these weaknesses, we propose a novel IE framework named QA4IE, which leverages the flexible question answering (QA) approaches to produce high quality relation triples across sentences. Based on the framework, we develop a large IE benchmark with high quality human evaluation. This benchmark contains 293K documents, 2M golden relation triples, and 636 relation types. We compare our system with some IE baselines on our benchmark and the results show that our system achieves great improvements.



rate research

Read More

Relation extraction is an important task in knowledge acquisition and text understanding. Existing works mainly focus on improving relation extraction by extracting effective features or designing reasonable model structures. However, few works have focused on how to validate and correct the results generated by the existing relation extraction models. We argue that validation is an important and promising direction to further improve the performance of relation extraction. In this paper, we explore the possibility of using question answering as validation. Specifically, we propose a novel question-answering based framework to validate the results from relation extraction models. Our proposed framework can be easily applied to existing relation classifiers without any additional information. We conduct extensive experiments on the popular NYT dataset to evaluate the proposed framework, and observe consistent improvements over five strong baselines.
99 - Jiankai Sun , Jie Zhao , Huan Sun 2019
Routing newly posted questions (a.k.a cold questions) to potential answerers with the suitable expertise in Community Question Answering sites (CQAs) is an important and challenging task. The existing methods either focus only on embedding the graph structural information and are less effective for newly posted questions, or adopt manually engineered feature vectors that are not as representative as the graph embedding methods. Therefore, we propose to address the challenge of leveraging heterogeneous graph and textual information for cold question routing by designing an end-to-end framework that jointly learns CQA node embeddings and finds best answerers for cold questions. We conducted extensive experiments to confirm the usefulness of incorporating the textual information from question tags and demonstrate that an end-2-end framework can achieve promising performances on routing newly posted questions asked by both existing users and newly registered users.
253 - Huijuan Xu , Kate Saenko 2015
We address the problem of Visual Question Answering (VQA), which requires joint image and language understanding to answer a question about a given photograph. Recent approaches have applied deep image captioning methods based on convolutional-recurrent networks to this problem, but have failed to model spatial inference. To remedy this, we propose a model we call the Spatial Memory Network and apply it to the VQA task. Memory networks are recurrent neural networks with an explicit attention mechanism that selects certain parts of the information stored in memory. Our Spatial Memory Network stores neuron activations from different spatial regions of the image in its memory, and uses the question to choose relevant regions for computing the answer, a process of which constitutes a single hop in the network. We propose a novel spatial attention architecture that aligns words with image patches in the first hop, and obtain improved results by adding a second attention hop which considers the whole question to choose visual evidence based on the results of the first hop. To better understand the inference process learned by the network, we design synthetic questions that specifically require spatial inference and visualize the attention weights. We evaluate our model on two published visual question answering datasets, DAQUAR [1] and VQA [2], and obtain improved results compared to a strong deep baseline model (iBOWIMG) which concatenates image and question features to predict the answer [3].
Understanding images and text together is an important aspect of cognition and building advanced Artificial Intelligence (AI) systems. As a community, we have achieved good benchmarks over language and vision domains separately, however joint reasoning is still a challenge for state-of-the-art computer vision and natural language processing (NLP) systems. We propose a novel task to derive joint inference about a given image-text modality and compile the Visuo-Linguistic Question Answering (VLQA) challenge corpus in a question answering setting. Each dataset item consists of an image and a reading passage, where questions are designed to combine both visual and textual information i.e., ignoring either modality would make the question unanswerable. We first explore the best existing vision-language architectures to solve VLQA subsets and show that they are unable to reason well. We then develop a modular method with slightly better baseline performance, but it is still far behind human performance. We believe that VLQA will be a good benchmark for reasoning over a visuo-linguistic context. The dataset, code and leaderboard is available at https://shailaja183.github.io/vlqa/.
In many real-world scenarios where extrinsic rewards to the agent are extremely sparse, curiosity has emerged as a useful concept providing intrinsic rewards that enable the agent to explore its environment and acquire information to achieve its goals. Despite their strong performance on many sparse-reward tasks, existing curiosity approaches rely on an overly holistic view of state transitions, and do not allow for a structured understanding of specific aspects of the environment. In this paper, we formulate curiosity based on grounded question answering by encouraging the agent to ask questions about the environment and be curious when the answers to these questions change. We show that natural language questions encourage the agent to uncover specific knowledge about their environment such as the physical properties of objects as well as their spatial relationships with other objects, which serve as valuable curiosity rewards to solve sparse-reward tasks more efficiently.

suggested questions

comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا