No Arabic abstract
Solution-processed intrinsic ZnO and Al doped ZnO (ZnO:Al) were spin coated on textured n-type c-Si wafer to replace the phosphorus doped amorphous silicon as the electron selective transport layer (ESTL) of the Si heterojunction (SHJ) solar cells. Besides the function of electron selective transportation, the non-doped ZnO was found to possess certain passivation effect on c-Si wafer. The SHJ solar cells with different combinations of passivation layer (intrinsic a-Si:H, SiOx and non-doped ZnO) and electron transport layer (non-doped ZnO and ZnO:Al ) were fabricated and compared. An efficiency up to 18.46% was achieved on a SHJ solar cell with an a-Si:H/ZnO:Al double layer back structure. And, the all solution-processed non-doped ZnO/ZnO:Al combination layer presents fairly good electron selective transportation property for SHJ solar cell, resulting in an efficiency of 17.13%. The carrier transport based on energy band diagrams of the rear side of the solar cells has been discussed related to the performance of the SHJ solar cells.
Solution-processed quantum dots (QDs) have a high potential for fabricating low cost, flexible and large-scale solar energy harvesting devices. It has recently been demonstrated that hybrid devices employing a single monovalent cation perovskite solution for PbS QD surface passivation exhibit enhanced photovoltaic performance when compared to standard ligand passivation. Herein we demonstrate that the use of a triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 perovskite composition for surface passivation of the quantum dots results in highly efficient solar cells, which maintain 96 % of their initial performance after 1200h shelf storage. We confirm perovskite shell formation around the PbS nanocrystals by a range of spectroscopic techniques as well as high-resolution transmission electron microscopy. We find that the triple cation shell results in a favorable energetic alignment to the core of the dot, resulting in reduced recombination due to charge confinement without limiting transport in the active layer. Consequently, photovoltaic devices fabricated via a single-step film deposition reached a maximum AM1.5G power conversion efficiency of 11.3 % surpassing most previous reports of PbS solar cells employing perovskite passivation.
Transition metal dichalcogenide (TMD) materials have emerged as promising candidates for thin film solar cells due to their wide bandgap range across the visible wavelengths, high absorption coefficient and ease of integration with both arbitrary substrates as well as conventional semiconductor technologies. However, reported TMD-based solar cells suffer from relatively low external quantum efficiencies (EQE) and low open circuit voltage due to unoptimized design and device fabrication. This paper studies $Pt/WSe_2$ vertical Schottky junction solar cells with various $WSe_2$ thicknesses in order to find the optimum absorber thickness.Also, we show that the photovoltaic performance can be improved via $Al_2O_3$ passivation which increases the EQE by up to 29.5% at 410 nm wavelength incident light. The overall resulting short circuit current improves through antireflection coating, surface doping, and surface trap passivation effects. Thanks to the ${Al_2O_3}$ coating, this work demonstrates a device with open circuit voltage ($V_{OC}$) of 380 mV and short circuit current density ($J_{SC}$) of 10.7 $mA/cm^2$. Finally, the impact of Schottky barrier height inhomogeneity at the $Pt/WSe_2$ contact is investigated as a source of open circuit voltage lowering in these devices
Silicon heterojunction (SHJ) solar cells represent a promising technological approach towards higher photovoltaics efficiencies and lower fabrication cost. While the device physics of SHJ solar cells have been studied extensively in the past, the ways in which nanoscopic electronic processes such as charge-carrier generation, recombination, trapping, and percolation affect SHJ device properties macroscopically have yet to be fully understood. We report the study of atomic scale current percolation at state-of-the-art a-Si:H/c-Si heterojunction solar cells under ambient operating conditions, revealing the profound complexity of electronic SHJ interface processes. Using conduction atomic force microscopy (cAFM), it is shown that the macroscopic current-voltage characteristics of SHJ solar cells is governed by the average of local nanometer-sized percolation pathways associated with bandtail states of the doped a-Si:H selective contact leading to above bandgap open circuit voltages ($V_{mbox{OC}}$) as high as 1.2 V ($V_{mbox{OC}}>e E_{mbox{gap}}^{mbox{Si}}$). This is not in violation of photovoltaic device physics but a consequence of the nature of nanometer-scale charge percolation pathways which originate from trap-assisted tunneling causing dark leakage current. We show that the broad distribution of local photovoltage is a direct consequence of randomly trapped charges at a-Si:H dangling bond defects which lead to strong local potential fluctuations and induce random telegraph noise of the dark current.
We have employed state-of-the-art cross-correlation noise spectroscopy to study carrier dynamics in silicon heterojunction solar cells, complimented by SENTARUS simulations of the same devices. These cells were composed of a light absorbing n-doped crystalline silicon layer contacted by passivating layers of i-a-Si:H and doped a-Si:H electrode layers. The method provided a two-orders-of-magnitude improved sensitivity and allowed to resolution of three additional contributions to noise in addition to 1/f noise. We have observed shot noise with Fano factor close to unity. We have also observed a peculiar generation-recombination term, which presents only under light illumination with energy above 2 eV and thus reflects light absorption and carrier trapping in the a-Si:H layers. A second, low-frequency generation-recombination term was detected at temperatures below 100 K. We argue that it appears because the process of charge carrier transfer across i-a-Si:H occurs via an intermediate defect limited by tunneling above about 100 K and a thermally assisted process below this temperature. We also discuss the spatial selectivity of noise spectroscopy, namely the tendency of the method to amplify noise contributions from the most resistive element of the cell. Indeed, in our case, all three terms are linked to the passivating i-a-Si:H layer.
We propose a two-stage multi-objective optimization framework for full scheme solar cell structure design and characterization, cost minimization and quantum efficiency maximization. We evaluated structures of 15 different cell designs simulated by varying material types and photodiode doping strategies. At first, non-dominated sorting genetic algorithm~II (NSGA-II) produced Pareto-optimal-solutions sets for respective cell designs. Then, on investigating quantum efficiencies of all cell designs produced by NSGA-II, we applied a new multi-objective optimization algorithm~II (OptIA-II) to discover the Pareto fronts of select (three) best cell designs. Our designed OptIA-II algorithm improved the quantum efficiencies of all select cell designs and reduced their fabrication costs. We observed that the cell design comprising an optimally doped zinc-oxide-based transparent conductive oxide (TCO) layer and rough silver back reflector (BR) offered a quantum efficiency ($Q_e$) of $0.6031.$ Overall, this paper provides a full characterization of cell structure designs. It derives a relationship between quantum efficiency, $Q_e$ of a cell with its TCO layers doping methods and TCO and BR layers material types. Our solar cells design characterization enables us to perform a cost-benefit analysis of solar cells usage in real-world applications