No Arabic abstract
Solution-processed quantum dots (QDs) have a high potential for fabricating low cost, flexible and large-scale solar energy harvesting devices. It has recently been demonstrated that hybrid devices employing a single monovalent cation perovskite solution for PbS QD surface passivation exhibit enhanced photovoltaic performance when compared to standard ligand passivation. Herein we demonstrate that the use of a triple cation Cs0.05(MA0.17FA0.83)0.95Pb(I0.9Br0.1)3 perovskite composition for surface passivation of the quantum dots results in highly efficient solar cells, which maintain 96 % of their initial performance after 1200h shelf storage. We confirm perovskite shell formation around the PbS nanocrystals by a range of spectroscopic techniques as well as high-resolution transmission electron microscopy. We find that the triple cation shell results in a favorable energetic alignment to the core of the dot, resulting in reduced recombination due to charge confinement without limiting transport in the active layer. Consequently, photovoltaic devices fabricated via a single-step film deposition reached a maximum AM1.5G power conversion efficiency of 11.3 % surpassing most previous reports of PbS solar cells employing perovskite passivation.
The scalability of highly efficient organic-inorganic perovskite solar cells (PSCs) is one of the remaining challenges of solar module manufacturing. Various scalable methods have been explored to strive for uniform perovskite films of high crystal quality on large-area substrates. However, each of these methods have individual drawbacks, limiting the successful commercialization of perovskite photovoltaics. Here, we report a fully scalable hybrid process, which combines vapor- and solution-based techniques to deposit high quality uniform perovskite films on large-area substrates. This two-step process does not use toxic solvents, and it further allows facile implementation of passivation strategies and additives. We fabricated PSCs based on this process and used blade coating to deposit both charge transporting layers (SnO2 and Spiro-OMeTAD) without hazardous solvents in ambient air. The fabricated PSCs have yielded open-circuit voltage up to 1.16 V and power conversion efficiency of 18.7 % with good uniformity on 5 cm x 5 cm substrates.
Lead sulfide (PbS) quantum dot (QD) photovoltaics have reached impressive efficiencies of 12%, making them particularly promising for future applications. Like many other types of emerging photovoltaic devices, their environmental instability remains the Achilles heel of this technology. In this work, we demonstrate that the degradation processes in PbS QDs which are exposed to oxygenated environments are tightly related to the choice of ligands, rather than their intrinsic properties. In particular, we demonstrate that while 1,2-ethanedithiol (EDT) ligands result in significant oxidation of PbS, lead iodide/lead bromide (PbX2) coated PbS QDs show no signs of oxidation or degradation. Consequently, since the former is ubiquitously used as a hole extraction layer in QD solar cells, it is predominantly responsible for the device performance evolution. The oxidation of EDT-PbS QDs results in a significantly reduced effective QD size, which triggers two competing processes: improved energetic alignment that enhances electron blocking, but reduced charge transport through the layer. At early times, the former process dominates, resulting in the commonly reported, but so far not fully explained initial increase in performance, while the latter governs the onset of degradation and deterioration of the photovoltaic performance. Our work highlights that the stability of PbS quantum dot solar cells can be significantly enhanced by an appropriate choice of ligands for all device components.
Solution-processed intrinsic ZnO and Al doped ZnO (ZnO:Al) were spin coated on textured n-type c-Si wafer to replace the phosphorus doped amorphous silicon as the electron selective transport layer (ESTL) of the Si heterojunction (SHJ) solar cells. Besides the function of electron selective transportation, the non-doped ZnO was found to possess certain passivation effect on c-Si wafer. The SHJ solar cells with different combinations of passivation layer (intrinsic a-Si:H, SiOx and non-doped ZnO) and electron transport layer (non-doped ZnO and ZnO:Al ) were fabricated and compared. An efficiency up to 18.46% was achieved on a SHJ solar cell with an a-Si:H/ZnO:Al double layer back structure. And, the all solution-processed non-doped ZnO/ZnO:Al combination layer presents fairly good electron selective transportation property for SHJ solar cell, resulting in an efficiency of 17.13%. The carrier transport based on energy band diagrams of the rear side of the solar cells has been discussed related to the performance of the SHJ solar cells.
We explore the degradation behaviour under continuous illumination and direct oxygen exposure of inverted unencapsulated formamidinium(FA)0.83Cs0.17Pb(I0.8Br0.2)3, CH3NH3PbI3, and CH3NH3PbI3-xClx perovskite solar cells. We continuously test the devices in-situ and in-operando with current-voltage sweeps, transient photocurrent, and transient photovoltage measurements, and find that degradation in the CH3NH3PbI3-xClx solar cells due to oxygen exposure occurs over shorter timescales than FA0.83Cs0.17Pb(I0.8Br0.2)3 mixed-cation devices. We attribute these oxygen-induced losses in the power conversion efficiencies to the formation of electron traps within the perovskite photoactive layer. Our results highlight that the formamidinium-caesium mixed-cation perovskites are much less sensitive to oxygen-induced degradation than the methylammonium-based perovskite cells, and that further improvements in perovskite solar cell stability should focus on the mitigation of trap generation during ageing.
In this perspective, we explore the insights into the device physics of perovskite solar cells gained from modeling and simulation of these devices. We discuss a range of factors that influence the modeling of perovskite solar cells, including the role of ions, dielectric constant, density of states, and spatial distribution of recombination losses. By focusing on the effect of non-ideal energetic alignment in perovskite photovoltaic devices, we demonstrate a unique feature in low recombination perovskite materials - the formation of an interfacial, primarily electronic, self-induced dipole that results in a significant increase in the built-in potential and device open-circuit voltage. Finally, we discuss the future directions of device modeling in the field of perovskite photovoltaics, describing some of the outstanding open questions in which device simulations can serve as a particularly powerful tool for future advancements in the field.