No Arabic abstract
Understanding the launching, acceleration, and collimation of jets powered by active galactic nuclei remains an outstanding problem in relativistic astrophysics. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very long baseline interferometry that has thus far been able to probe the transverse jet structure in the acceleration and collimation zone of only two sources. Here we report radio interferometric observations of 3C 84 (NGC 1275), the central galaxy of the Perseus cluster, made with an array including the orbiting radio telescope of the RadioAstron mission. The obtained image transversely resolves the edge-brightened jet in 3C 84 only 30 microarcseconds from the core, which is ten times closer to the central engine than what has been possible in previous ground-based observations, and it allows us to measure the jet collimation profile from ~ 100 to ~10000 gravitational radii from the black hole. The previously found, almost cylindrical jet profile on scales larger than a few thousand r_g is now seen to continue at least down to a few hundred r_g from the black hole and we find a broad jet with a transverse radius larger than about 250 r_g at only 350 r_g from the core. If the bright outer jet layer is launched by the black hole ergosphere, it has to rapidly expand laterally on scales smaller than 100 r_g. If this is not the case, then this jet sheath is likely launched from the accretion disk.
Nearby radio galaxies that contain jets are extensively studied with VLBI, addressing jet launching and the physical mechanisms at play around massive black holes. 3C 84 is unique in this regard, because the combination of its proximity and large SMBH mass provides a high spatial resolution to resolve the complex structure at the jet base. For 3C 84 an angular scale of 50 ${mu}$as corresponds to 200 - 250 Schwarzschild radii ($R_s$). Recent RadioAstron VLBI imaging at 22 GHz revealed an east-west elongated feature at the northern end of the VLBI jet, which challenges interpretations. Here we propose instead that the jet apex is not located within the 22 GHz VLBI core region but more upstream of the jet. We base our arguments on a 2D cross-correlation analysis of quasi-simultaneously obtained VLBI images at 15, 43, and 86 GHz, which measures the opacity shift of the VLBI core in 3C 84. With the assumption of the power law index ($k_r$) of the core shift being set to 1, we find the jet apex to be located $83 pm 7$ ${mu}$as north (upstream) of the 86 GHz VLBI core. Depending on the assumptions for $k_r$ and the particle number density power law index n, we find a mixed toroidal/poloidal magnetic field configuration, consistent with a region which is offset from the central engine by about 400-1500 $R_s$. The measured core shift is then used to estimate the magnetic field strength, which amounts to B = 1.80 - 4.0 G near the 86 GHz VLBI core. We discuss some physical implications of these findings.
Radio jets in active galaxies have been expected to interact with circumnuclear environments in their early phase evolutions. By performing the multi-epoch monitoring observation with the KVN and VERA Array (KaVA) at 43~GHz, we investigate the kinematics of the notable newborn bright component C3 located at the tip of the recurrent jet of 3C~84. During 2015 August-September, we discover the flip of C3 and the amount of the flip is about 0.4~milli-arcsecond in angular scale, which corresponds to 0.14 parsec in physical scale. After the flip of C3, it wobbled at the same location for a few months and then it restarted to propagate towards the southern direction. The flux density of C3 coherently showed the monotonic increase during the observation period. The flip is in good agreement with hydrodynamical simulations of jets in clumpy ambient medium. We estimate the number density of the putative clump based on the momentum balance between the jet thrust and the ram pressure from the clump and it is about $10^{3-5}~{rm cm^{-3}}$. We briefly discuss possible origins of the clump.
We present a comprehensive 5-43 GHz VLBA study of the blazar 3C 273 initiated after an onset of a strong $gamma$-ray flare in this source. We have analyzed the kinematics of new-born components, light curves, and position of the apparent core to pinpoint the location of the $gamma$-ray emission. Estimated location of the $gamma$-ray emission zone is close to the jet apex, 2 pc to 7 pc upstream from the observed 7 mm core. This is supported by ejection of a new component. The apparent core position was found to be inversely proportional to frequency. The brightness temperature in the 7 mm core reached values up to at least $10^{13}$ K during the flare. This supports the dominance of particle energy density over that of magnetic field in the 7 mm core. Particle density increased during the radio flare at the apparent jet base, affecting synchrotron opacity. This manifested itself as an apparent core shuttle along the jet during the 7 mm flare. It is also shown that a region where optical depth decreases from $tausim1$ to $tau<<1$ spans over several parsecs along the jet. The jet bulk flow speed estimated at the level of 12c on the basis of time lags between 7 mm light curves of stationary jet features is 1.5 times higher than that derived from VLBI apparent kinematics analysis.
We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of the bright component C3 with reference to the radio core is found to be $0.27 pm 0.02c$ between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.
The quasar 3C~286 is one of two compact steep spectrum sources detected by the {it Fermi}/LAT. Here, we investigate the radio properties of the parsec(pc)-scale jet and its (possible) association with the $gamma$-ray emission in 3C~286. The Very Long Baseline Interferometry (VLBI) images at various frequencies reveal a one-sided core--jet structure extending to the southwest at a projected distance of $sim$1 kpc. The component at the jet base showing an inverted spectrum is identified as the core, with a mean brightness temperature of $2.8times 10^{9}$~K. The jet bends at about 600 pc (in projection) away from the core, from a position angle of $-135^circ$ to $-115^circ$. Based on the available VLBI data, we inferred the proper motion speed of the inner jet as $0.013 pm 0.011$ mas yr$^{-1}$ ($beta_{rm app} = 0.6 pm 0.5$), corresponding to a jet speed of about $0.5,c$ at an inclination angle of $48^circ$ between the jet and the line of sight of the observer. The brightness temperature, jet speed and Lorentz factor are much lower than those of $gamma$-ray-emitting blazars, implying that the pc-scale jet in 3C~286 is mildly relativistic. Unlike blazars in which $gamma$-ray emission is in general thought to originate from the beamed innermost jet, the location and mechanism of $gamma$-ray emission in 3C~286 may be different as indicated by the current radio data. Multi-band spectrum fitting may offer a complementary diagnostic clue of the $gamma$-ray production mechanism in this source.