Do you want to publish a course? Click here

VERA monitoring of the radio jet 3C 84 during 2007--2013: detection of non-linear motion

94   0   0.0 ( 0 )
 Added by Kazuo Sorai
 Publication date 2018
  fields Physics
and research's language is English




Ask ChatGPT about the research

We present a kinematic study of the subparsec-scale radio jet of the radio galaxy 3C 84/NGC 1275 with the VLBI Exploration of Radio Astrometry (VERA) array at 22 GHz for 80 epochs from 2007 October to 2013 December. The averaged radial velocity of the bright component C3 with reference to the radio core is found to be $0.27 pm 0.02c$ between 2007 October and 2013 December. This constant velocity of C3 is naturally explained by the advancing motion of the head of the mini-radio lobe. We also find a non-linear component in the motion of C3 with respect to the radio core. We briefly discuss possible origins of this non-linear motion.



rate research

Read More

Nearby radio galaxies that contain jets are extensively studied with VLBI, addressing jet launching and the physical mechanisms at play around massive black holes. 3C 84 is unique in this regard, because the combination of its proximity and large SMBH mass provides a high spatial resolution to resolve the complex structure at the jet base. For 3C 84 an angular scale of 50 ${mu}$as corresponds to 200 - 250 Schwarzschild radii ($R_s$). Recent RadioAstron VLBI imaging at 22 GHz revealed an east-west elongated feature at the northern end of the VLBI jet, which challenges interpretations. Here we propose instead that the jet apex is not located within the 22 GHz VLBI core region but more upstream of the jet. We base our arguments on a 2D cross-correlation analysis of quasi-simultaneously obtained VLBI images at 15, 43, and 86 GHz, which measures the opacity shift of the VLBI core in 3C 84. With the assumption of the power law index ($k_r$) of the core shift being set to 1, we find the jet apex to be located $83 pm 7$ ${mu}$as north (upstream) of the 86 GHz VLBI core. Depending on the assumptions for $k_r$ and the particle number density power law index n, we find a mixed toroidal/poloidal magnetic field configuration, consistent with a region which is offset from the central engine by about 400-1500 $R_s$. The measured core shift is then used to estimate the magnetic field strength, which amounts to B = 1.80 - 4.0 G near the 86 GHz VLBI core. We discuss some physical implications of these findings.
125 - M. Kino , K. Wajima , N. Kawakatu 2018
Radio jets in active galaxies have been expected to interact with circumnuclear environments in their early phase evolutions. By performing the multi-epoch monitoring observation with the KVN and VERA Array (KaVA) at 43~GHz, we investigate the kinematics of the notable newborn bright component C3 located at the tip of the recurrent jet of 3C~84. During 2015 August-September, we discover the flip of C3 and the amount of the flip is about 0.4~milli-arcsecond in angular scale, which corresponds to 0.14 parsec in physical scale. After the flip of C3, it wobbled at the same location for a few months and then it restarted to propagate towards the southern direction. The flux density of C3 coherently showed the monotonic increase during the observation period. The flip is in good agreement with hydrodynamical simulations of jets in clumpy ambient medium. We estimate the number density of the putative clump based on the momentum balance between the jet thrust and the ram pressure from the clump and it is about $10^{3-5}~{rm cm^{-3}}$. We briefly discuss possible origins of the clump.
Understanding the launching, acceleration, and collimation of jets powered by active galactic nuclei remains an outstanding problem in relativistic astrophysics. This is partly because observational tests of jet formation models suffer from the limited angular resolution of ground-based very long baseline interferometry that has thus far been able to probe the transverse jet structure in the acceleration and collimation zone of only two sources. Here we report radio interferometric observations of 3C 84 (NGC 1275), the central galaxy of the Perseus cluster, made with an array including the orbiting radio telescope of the RadioAstron mission. The obtained image transversely resolves the edge-brightened jet in 3C 84 only 30 microarcseconds from the core, which is ten times closer to the central engine than what has been possible in previous ground-based observations, and it allows us to measure the jet collimation profile from ~ 100 to ~10000 gravitational radii from the black hole. The previously found, almost cylindrical jet profile on scales larger than a few thousand r_g is now seen to continue at least down to a few hundred r_g from the black hole and we find a broad jet with a transverse radius larger than about 250 r_g at only 350 r_g from the core. If the bright outer jet layer is launched by the black hole ergosphere, it has to rapidly expand laterally on scales smaller than 100 r_g. If this is not the case, then this jet sheath is likely launched from the accretion disk.
We present radio-to-optical data taken by the WEBT, supplemented by VLBA and RXTE observations, of 3C 279. Our goal is to use this extensive database to draw inferences regarding the physics of the relativistic jet. We assemble multifrequency light curves with data from 30 ground-based observatories and the space-based instruments, along with linear polarization vs. time in the optical R band. In addition, we present a sequence of 22 images (with polarization vectors) at 43 GHz at resolution 0.15 milliarcsec, obtained with the VLBA. We analyse the light curves and polarization, as well as the spectral energy distributions at different epochs, corresponding to different brightness states. The IR-optical-UV continuum spectrum of the variable component corresponds to a power law with a constant slope of -1.6, while in the 2.4-10 keV X-ray band it varies in slope from -1.1 to -1.6. The steepest X-ray spectrum occurs at a flux minimum. During a decline in flux from maximum in late 2006, the optical and 43 GHz core polarization vectors rotate by ~300 degrees. The continuum spectrum agrees with steady injection of relativistic electrons with a power-law energy distribution of slope -3.2 that is steepened to -4.2 at high energies by radiative losses. The X-ray emission at flux minimum comes most likely from a new component that starts in an upstream section of the jet where inverse Compton scattering of seed photons from outside the jet is important. The rotation of the polarization vector implies that the jet contains a helical magnetic field that extends ~20 pc past the 43 GHz core.
We report results from a deep polarization imaging of the nearby radio galaxy 3C$,$84 (NGC$,$1275). The source was observed with the Global Millimeter VLBI Array (GMVA) at 86$,$GHz at an ultra-high angular resolution of $50mu$as (corresponding to 250$R_{s}$). We also add complementary multi-wavelength data from the Very Long Baseline Array (VLBA; 15 & 43$,$GHz) and from the Atacama Large Millimeter/submillimeter Array (ALMA; 97.5, 233.0, and 343.5$,$GHz). At 86$,$GHz, we measure a fractional linear polarization of $sim2$% in the VLBI core region. The polarization morphology suggests that the emission is associated with an underlying limb-brightened jet. The fractional linear polarization is lower at 43 and 15$,$GHz ($sim0.3-0.7$% and $<0.1$%, respectively). This suggests an increasing linear polarization degree towards shorter wavelengths on VLBI scales. We also obtain a large rotation measure (RM) of $sim10^{5-6}~{rm rad/m^{2}}$ in the core at $gtrsim$43$,$GHz. Moreover, the VLBA 43$,$GHz observations show a variable RM in the VLBI core region during a small flare in 2015. Faraday depolarization and Faraday conversion in an inhomogeneous and mildly relativistic plasma could explain the observed linear polarization characteristics and the previously measured frequency dependence of the circular polarization. Our Faraday depolarization modeling suggests that the RM most likely originates from an external screen with a highly uniform RM distribution. To explain the large RM value, the uniform RM distribution, and the RM variability, we suggest that the Faraday rotation is caused by a boundary layer in a transversely stratified jet. Based on the RM and the synchrotron spectrum of the core, we provide an estimate for the magnetic field strength and the electron density of the jet plasma.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا