Do you want to publish a course? Click here

First observation of the competing fission modes in the neutron-deficient sub-lead region

68   0   0.0 ( 0 )
 Added by Igor Tsekhanovich
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

Fragment mass distributions from fission of excited compound nucleus $^{178}$Pt have been deduced from the measured fragment velocities. The $^{178}$Pt nucleus was created at the JAEA tandem facility in a complete fusion reaction $^{36}$Ar + $^{142}$Nd, at beam energies of 155, 170 and 180 MeV. The data are indicative of a mixture of the mass-asymmetric and mass-symmetric fission modes associated with higher and lower total kinetic energies of the fragments, respectively. The measured fragment yields are dominated by asymmetric mass splits, with the symmetric mode contributing at the level of $approx1/3$. This constitutes the first observation of a multimodal fission in the sub-lead region. Most probable experimental fragment-mass split of the asymmetric mode, $A_{L}/A_{H}approx 79/99$, is well reproduced by nuclear density functional theory using the UNEDF1-HFB and D1S potentials. The symmetric mode is associated by theory with very elongated fission fragments, which is consistent with the observed total kinetic energy/fragment mass correlation.



rate research

Read More

To disentangle the role of shell effects and dynamics, fission fragment mass distributions of $^{191}$Au, a nucleus in the newly identified island of mass asymmetric fission in the sub-lead region, have been measured down to excitation energy of $approx$20 MeV above the fission barrier via two different entrance channels, viz. $^{16}$O+$^{175}$Lu and $^{37}$Cl+$^{154}$Sm reactions. Apart from having signature of the shell effects in both the cases, clear experimental evidence of quasifission has been observed in the mass distributions of the Cl induced reaction, that has also been substantiated by the theoretical calculations. This crucial evidence along with a systematic analysis of available experimental data has revealed that the dynamics in the entrance channel has significant influence on most of the reactions used earlier to explore the persistence of recently discovered mass asymmetry in $beta$-delayed fission at low energy in this mass region, ignoring which might lead to ambiguity in interpreting the heavy-ion data.
Lifetimes of $2^+_1$ and $4^+_1$ states, as well as some negative-parity and non-yrast states, in $^{188-200}$Hg were measured using $gamma-gamma$ electronic fast timing techniques with the LaBr$_3$(Ce) detector array of the GRIFFIN spectrometer. The excited states were populated in the $epsilon/beta^+$-decay of $J^pi =7^+/2^-$ $^{188-200}$Tl produced at the TRIUMF-ISAC facility. The deduced B(E2) values are compared to different interacting boson model predictions. The precision achieved in this work over previous ones allows for a meaningful comparison with the different theoretical models of these transitional Hg isotopes, which confirms the onset of state mixing in $^{190}$Hg.
Fission of atomic nuclei often produces mass asymmetric fragments. However, the origin of this asymmetry was believed to be different in actinides and in the sub-lead region [A. Andreyev {it et al.}, Phys. Rev. Lett. {bf 105}, 252502 (2010)]. It has recently been argued that quantum shell effects stabilising pear shapes of the fission fragments could explain the observed asymmetries in fission of actinides[G. Scamps and C. Simenel, Nature {bf 564}, 382 (2018)]. This interpretation is tested in the sub-lead region using microscopic mean-field calculations of fission based on the Hartree-Fock approach with BCS pairing correlations. The evolution of the number of protons and neutrons in asymmetric fragments of mercury isotope fissions is interpreted in terms of deformed shell gaps in the fragments. A new method is proposed to investigate the dominant shell effects in the pre-fragments at scission. We conclude that the mechanisms responsible for asymmetric fissions in the sub-lead region are the same as in the actinide region, which is a strong indication of their universality.
The {gamma}-ray strength function and level density in the quasi-continuum of 151,153Sm have been measured using BGO shielded Ge clover detectors of the STARLiTeR system. The Compton shields allow for an extraction of the {gamma} strength down to unprecedentedly low {gamma} energies of about 500 keV. For the first time an enhanced low- energy {gamma}-ray strength has been observed in the rare-earth region. In addition, for the first time both the upbend and the well known scissors resonance have been observed simultaneously for the same nucleus. Hauser-Feshbach calculations show that this strength enhancement at low {gamma} energies could have an impact of 2-3 orders of magnitude on the (n,{gamma}) reaction rates for the r-process nucleosynthesis.
The lifetimes of the low-lying excited states $2^+$ and $4^+$ have been directly measured in the neutron-deficient $^{106,108}$Sn isotopes. The nuclei were populated via a deep-inelastic reaction and the lifetime measurement was performed employing a differential plunger device. The emitted $gamma$ rays were detected by the AGATA array, while the reaction products were uniquely identified by the VAMOS++ magnetic spectrometer. Large-Scale Shell-Model calculations with realistic forces indicate that, independently of the pairing content of the interaction, the quadrupole force is dominant in the $B(E2; 2_1^+ to 0_{g.s.}^+)$ values and it describes well the experimental pattern for $^{104-114}$Sn; the $B(E2; 4_1^+ to 2_1^+)$ values, measured here for the first time, depend critically on a delicate pairing-quadrupole balance, disclosed by the very precise results in $^{108}$Sn. This result provides insight in the hitherto unexplained $B(E2; 4_1^+ to 2_1^+)/B(E2; 2_1^+ to 0_{g.s.}^+) < 1$ anomaly.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا