Do you want to publish a course? Click here

Effect of shell structure on the fission of sub-lead nuclei

74   0   0.0 ( 0 )
 Added by Guillaume Scamps
 Publication date 2019
  fields
and research's language is English




Ask ChatGPT about the research

Fission of atomic nuclei often produces mass asymmetric fragments. However, the origin of this asymmetry was believed to be different in actinides and in the sub-lead region [A. Andreyev {it et al.}, Phys. Rev. Lett. {bf 105}, 252502 (2010)]. It has recently been argued that quantum shell effects stabilising pear shapes of the fission fragments could explain the observed asymmetries in fission of actinides[G. Scamps and C. Simenel, Nature {bf 564}, 382 (2018)]. This interpretation is tested in the sub-lead region using microscopic mean-field calculations of fission based on the Hartree-Fock approach with BCS pairing correlations. The evolution of the number of protons and neutrons in asymmetric fragments of mercury isotope fissions is interpreted in terms of deformed shell gaps in the fragments. A new method is proposed to investigate the dominant shell effects in the pre-fragments at scission. We conclude that the mechanisms responsible for asymmetric fissions in the sub-lead region are the same as in the actinide region, which is a strong indication of their universality.



rate research

Read More

Fission of $^{180}$Hg produces mass asymmetric fragments which are expected to be influenced by deformed shell-effects at N=56 in the heavy fragment and Z=34 in the light fragment [G. Scamps and C. Simenel, arXiv:1904.01275 (2019)]. To investigate both shell-effects and to determine which one has the main influence on the asymmetry in the region of the $^{180}$Hg, we produce a systematic of Constraint-Hartree-Fock calculations in nuclei with similar N/Z ratio than the $^{178}$Pt. It is found that N=56 determines the asymmetry of systems in this region of the nuclear chart.
The atomic nucleus is a quantum many-body system whose constituent nucleons (protons and neutrons) are subject to complex nucleon-nucleon interactions that include spin- and isospin-dependent components. For stable nuclei, already several decades ago, emerging seemingly regular patterns in some observables could be described successfully within a shell-model picture that results in particularly stable nuclei at certain magic fillings of the shells with protons and/or neutrons: N,Z = 8, 20, 28, 50, 82, 126. However, in short-lived, so-called exotic nuclei or rare isotopes, characterized by a large N/Z asymmetry and located far away from the valley of beta stability on the nuclear chart, these magic numbers, viewed through observables, were shown to change. These changes in the regime of exotic nuclei offer an unprecedented view at the roles of the various components of the nuclear force when theoretical descriptions are confronted with experimental data on exotic nuclei where certain effects are enhanced. This article reviews the driving forces behind shell evolution from a theoretical point of view and connects this to experimental signatures.
To disentangle the role of shell effects and dynamics, fission fragment mass distributions of $^{191}$Au, a nucleus in the newly identified island of mass asymmetric fission in the sub-lead region, have been measured down to excitation energy of $approx$20 MeV above the fission barrier via two different entrance channels, viz. $^{16}$O+$^{175}$Lu and $^{37}$Cl+$^{154}$Sm reactions. Apart from having signature of the shell effects in both the cases, clear experimental evidence of quasifission has been observed in the mass distributions of the Cl induced reaction, that has also been substantiated by the theoretical calculations. This crucial evidence along with a systematic analysis of available experimental data has revealed that the dynamics in the entrance channel has significant influence on most of the reactions used earlier to explore the persistence of recently discovered mass asymmetry in $beta$-delayed fission at low energy in this mass region, ignoring which might lead to ambiguity in interpreting the heavy-ion data.
Experimental studies of fission induced in relativistic nuclear collisions show a systematic enhancement of the excitation energy of the primary fragments by a factor of ~ 2, before their decay by fission and other secondary fragments. Although it is widely accepted that by doubling the energies of the single-particle states may yield a better agreement with fission data, it does not prove fully successful, since it is not able to explain yields for light and intermediate mass fragments. State-of-the-art calculations are successful to describe the overall shape of the mass distribution of fragments, but fail within a factor of 2-10 for a large number of individual yields. Here, we present a novel approach that provides an account of the additional excitation of primary fragments due to final state interaction with the target. Our method is applied to the 238U + 208Pb reaction at 1 GeV/nucleon (and is applicable to other energies), an archetype case of fission studies with relativistic heavy ions, where we find that the large probability of energy absorption through final state excitation of giant resonances in the fragments can substantially modify the isotopic distribution of final fragments in a better agreement with data. Finally, we demonstrate that large angular momentum transfers to the projectile and to the primary fragments via the same mechanism imply the need of more elaborate theoretical methods than the presently existing ones.
A systematic shell model description of the experimental Gamow-Teller transition strength distributions in $^{42}$Ti, $^{46}$Cr, $^{50}$Fe and $^{54}$Ni is presented. These transitions have been recently measured via $beta$ decay of these $T_z$=-1 nuclei, produced in fragmentation reactions at GSI and also with ($^3${He},$t$) charge-exchange (CE) reactions corresponding to $T_z = + 1$ to $T_z = 0$ carried out at RCNP-Osaka.The calculations are performed in the $pf$ model space, using the GXPF1a and KB3G effective interactions. Qualitative agreement is obtained for the individual transitions, while the calculated summed transition strengths closely reproduce the observed ones.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا