Do you want to publish a course? Click here

Compton Scattering from the Deuteron above Pion-Production Threshold

75   0   0.0 ( 0 )
 Added by Kevin Fissum
 Publication date 2018
  fields
and research's language is English




Ask ChatGPT about the research

The electromagnetic polarizabilities of the nucleon are fundamental nucleon-structure observables that characterize its response to external electromagnetic fields. The neutron polarizabilities can be accessed from Compton-scattering data on light nuclear targets. Recent measurements of the differential cross section for Compton scattering on the deuteron below the pion-production threshold have decreased the uncertainties in the neutron polarizabilities, yet the proton polarizabilities remain known substantially more accurately. As the sensitivity of the cross section to the polarizabilities increases with incident photon energy, measurements above the pion threshold may offer a way for an improved determination of the neutron polarizabilities. In this article, the first measurement of the cross section for Compton scattering on the deuteron above the pion-production threshold is presented.



rate research

Read More

137 - A. Deltuva , A. C. Fonseca 2015
Deuteron-deuteron elastic scattering and transfer reactions in the energy regime above four-nucleon breakup threshold are described by solving exact four-particle equations for transition operators. Several realistic nuclear interaction models are used, including the one with effective many-nucleon forces generated by the explicit $Delta$-isobar excitation; the Coulomb force between protons is taken into account as well. Differential cross sections, deuteron analyzing powers, outgoing nucleon polarization, and deuteron-to-neutron polarization transfer coefficients are calculated at 10 MeV deuteron energy. Overall good agreement with the experimental data is found. The importance of breakup channels is demonstrated.
Values of the proton analysing power in the $pdto{}^{3}textrm{He},pi^0/^{3}textrm{H},pi^+$ reactions at 350-360~MeV per nucleon were obtained by using a polarised proton beam incident on a deuterium cluster-jet target and with a polarised deuteron beam incident on a target cell filled with polarised hydrogen. These results have a much larger angular coverage than existing data. First measurements are also presented of the deuteron vector analysing power and the deuteron-proton spin correlations. Data were also obtained on the deuteron-proton spin correlation and proton analysing power at small angles at 600~MeV per nucleon, though the angular coverage at this energy was much more restricted even when using a deuteron beam. By combining the extrapolated values of the spin correlations to the forward or backward directions with published measurements of the deuteron tensor analysing powers, the relative phases between the two non-vanishing amplitudes were evaluated.
We present recent results on elastic deuteron Compton scattering calculations for polarised beans and targets up to next-to-leading order within Chiral Effective Field Theory in the Small Scale Expansion variant to implement a dynamical Delta(1232) degree of freedom. A simple power-counting argument discloses that np-intermediate rescattering states must be explicitly included at leading order already. This automatically results in the correct Thomson limit and guarantees current conservation. In view of ongoing effort at MAXlab, proposals at HIGS and plans at MAMI, we address in detail single- and double-polarised observables with linearly or circularly polarised photons on both unpolarised and vector-polarised deuterons. Our results indicate that several of the polarisation observables can be instrumental to extract not only spin-independent nucleon polarisabilities, but also the so-far practically un-determined spin-dependent polarisabilities which parameterise the stiffness of the nucleon spin in external electro-magnetic fields. Amongst the questions addressed are: convergence of the expansion for including the Delta, the role of the np-rescattering contributions, and sensitivity to the deuteron wave function. An interactive Mathematica 7.0 notebook of these findings is available from the authors.
Wide-angle exclusive Compton scattering and single-pion photoproduction from the proton have been investigated via measurement of the polarization transfer from a circularly polarized photon beam to the recoil proton. The wide-angle Compton scattering polarization transfer was analyzed at an incident photon energy of 3.7~GeV at a proton scattering angle of cma$= 70^circ$. The longitudinal transfer KLL, measured to be $0.645 pm 0.059 pm 0.048$, where the first error is statistical and the second is systematic, has the same sign as predicted for the reaction mechanism in which the photon interacts with a single quark carrying the spin of the proton. However, the observed value is $sim$3~times larger than predicted by the generalized-parton-distribution-based calculations, which indicates a significant unknown contribution to the scattering amplitude.
In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.
comments
Fetching comments Fetching comments
Sign in to be able to follow your search criteria
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا