Do you want to publish a course? Click here

Isospin breaking in pion-deuteron scattering and the pion-nucleon scattering lengths

225   0   0.0 ( 0 )
 Added by Martin Hoferichter
 Publication date 2012
  fields
and research's language is English




Ask ChatGPT about the research

In recent years, high-accuracy data for pionic hydrogen and deuterium have become the primary source of information on the pion-nucleon scattering lengths. Matching the experimental precision requires, in particular, the study of isospin-breaking corrections both in pion-nucleon and pion-deuteron scattering. We review the mechanisms that lead to the cancellation of potentially enhanced virtual-photon corrections in the pion-deuteron system, and discuss the subtleties regarding the definition of the pion-nucleon scattering lengths in the presence of electromagnetic interactions by comparing to nucleon-nucleon scattering. Based on the pi^{+/-} p channels we find for the virtual-photon-subtracted scattering lengths in the isospin basis a^{1/2}=(170.5 +/- 2.0) x 10^{-3} mpi^{-1} and a^{3/2}=(-86.5 +/- 1.8) x 10^{-3} mpi^{-1}.



rate research

Read More

200 - F. Huang 2009
A global analysis of the world data on differential cross sections and polarization asymmetries of backward pion-nucleon scattering for invariant collision energies above 3 GeV is performed in a Regge model. Including the $N_alpha$, $N_gamma$, $Delta_delta$ and $Delta_beta$ trajectories, we reproduce both angular distributions and polarization data for small values of the Mandelstam variable $u$, in contrast to previous analyses. The model amplitude is used to obtain evidence for baryon resonances with mass below 3 GeV. Our analysis suggests a $G_{39}$ resonance with a mass of 2.83 GeV as member of the $Delta_{beta}$ trajectory from the corresponding Chew-Frautschi plot.
We present a lattice QCD study of $Npi$ scattering in the positive-parity nucleon channel, where the puzzling Roper resonance $N^*(1440)$ resides in experiment. The study is based on the PACS-CS ensemble of gauge configurations with $N_f=2+1$ Wilson-clover dynamical fermions, $m_pi simeq 156~$MeV and $Lsimeq 2.9~$fm. In addition to a number of $qqq$ interpolating fields, we implement operators for $Npi$ in $p$-wave and $Nsigma$ in $s$-wave. In the center-of-momentum frame we find three eigenstates below 1.65 GeV. They are dominated by $N(0)$, $N(0)pi(0)pi(0)$ (mixed with $N(0)sigma(0)$) and $N(p)pi(-p)$ with $psimeq 2pi/L$, where momenta are given in parentheses. This is the first simulation where the expected multi-hadron states are found in this channel. The experimental $Npi$ phase-shift would -- in the approximation of purely elastic $Npi$ scattering -- imply an additional eigenstate near the Roper mass $m_Rsimeq 1.43~$GeV for our lattice size. We do not observe any such additional eigenstate, which indicates that $Npi$ elastic scattering alone does not render a low-lying Roper. Coupling with other channels, most notably with $Npipi$, seems to be important for generating the Roper resonance, reinforcing the notion that this state could be a dynamically generated resonance. Our results are in line with most of previous lattice studies based just on $qqq$ interpolators, that did not find a Roper eigenstate below $1.65~$GeV. The study of the coupled-channel scattering including a three-particle decay $Npipi$ remains a challenge.
The scattering lengths of a two pion system are the {it golden magnitudes} to test the QCD predictions in the low energy sector. The DIRAC (PS-212) experiment at CERN will obtain a particular combination of the S-wave isospin 0 and 2 scattering lengths by measuring the lifetime of pionium, the hydrogen-like $pi^+ pi^-$ atom. This measurement tests the accurate predictions of the Chiral Perturbation Theory. The most recent experimental results are presented.
A theory of two-pion photo- and electroproduction off the nucleon is derived considering all explicit three-body mechanisms of the interacting $pipi N$ system. The full three-body dynamics of the interacting $pipi N$ system is accounted for by the Faddeev-type ordering structure of the Alt-Grassberger-Sandhas equations. The formulation is valid for hadronic two-point and three-point functions dressed by arbitrary internal mechanisms provided all associated electromagnetic currents are constructed to satisfy their respective (generalized) Ward-Takahashi identities. It is shown that coupling the photon to the Faddeev structure of the underlying hadronic two-pion production mechanisms results in a natural expansion of the full two-pion photoproduction current $M_{pipi}^mu$ in terms of multiple dressed loops involving two-body subsystem scattering amplitudes of the $pipi N$ system that preserves gauge invariance as a matter of course order by order in the number of (dressed) loops. A closed-form expression is presented for the entire gauge-invariant current $M_{pipi}^mu$ with complete three-body dynamics. Individually gauge-invariant truncations of the full dynamics most relevant for practical applications at the no-loop, one-loop, and two-loop levels are discussed in detail. An approximation scheme to the full two-pion amplitude for calculational purposes is also presented. It approximates, systematically, the full amplitude to any desired order of expansion in the underlying hadronic two-body amplitude. Moreover, it allows for the approximate incorporation of all neglected higher-order mechanisms in terms of a phenomenological remainder current. The effect and phenomenological usefulness of this remainder current is assessed in a tree-level calculation of the $gamma N to K K Xi$ reaction.
We present an extraction of the pion-nucleon ($pi N$) scattering lengths from low-energy $pi N$ scattering, by fitting a representation based on Roy-Steiner equations to the low-energy data base. We show that the resulting values confirm the scattering-length determination from pionic atoms, and discuss the stability of the fit results regarding electromagnetic corrections and experimental normalization uncertainties in detail. Our results provide further evidence for a large $pi N$ $sigma$-term, $sigma_{pi N}=58(5)$ MeV, in agreement with, albeit less precise than, the determination from pionic atoms.
comments
Fetching comments Fetching comments
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا